Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Turns Sewage Farms into Power Plants

29.04.2002


Researchers at the University of Warwick’s Warwick Process Technology Group have devised a process that turns wet waste from sewage farms and paper mills into a source of power.



University of Warwick researcher Dr Ashok Bhattacharya and his team are part of a Europe wide consortium that have cracked the problem of how to extract very pure levels of hydrogen from wet bio-matter, such as sewage or paper mill waste. This very pure hydrogen can then be used in “fuel cells” to power homes, factories and cars. The research consortium have now received £2.5million in European funding to work up their lab based solution into larger prototypes. Eventually the research team’s “plated membrane reactors” could be built as small industrial units, no bigger than a large room in some cases, and added directly to the sites of sewage plants or paper mills.

Previous attempts to extract pure hydrogen from bio-matter to power fuel cells have only met with limited success, even with dry material. The new process extracts very pure hydrogen from the more difficult but exceedingly abundant wet bio-matter and even makes a virtue of the water content of the material to generate even more pure hydrogen.


First the waste biomass is gasified breaking it down into its Methane CH4, water H2O, Carbonmonoxide CO, and carbondioxide CO2 and some hydrogen. All these gases are then fed into a reactor which uses them in a chemical reaction which extracts the hydrogen from both the methane and the water. In normal circumstances this reaction would reach an equilibrium and simply stop once a certain amount of hydrogen had been generated. However the research team uses a palladium coated ceramic semi permeable membrane as part of the reactor which only lets hydrogen pass through. This allows the researchers to both harvest very pure hydrogen from the system (it can be over 95% pure) and to keep the reaction going as long as it is fed with the waste biomass as the hydrogen never builds up to the point where a chemical equilibrium would be reached thus stopping the reaction.

The hydrogen produced by this very energy efficient method can then be used to power hydrogen fuel cells. This process is also much cleaner than traditional production of H2 as it does not use up fossil fuels, thus it produces no more CO2 than would be produced naturally from the material biodegrading and it produces no other emissions such as nitrous oxides.

Other novel engineering in the process includes the use of a coated nanocrystaline catalyst to accelerate the reaction, and particular methods to manage heat transfer and pressure.

The research project brings together the University of Warwick’s Warwick Process Technology Group team with Dutch, German and UK firms. In particular the Dutch firm BTG and the University of Twente have contributed to the gasification process and the Sheffield firm Dytech have contributed to the highly engineered porous ceramics used in the reactor.

Peter Dunn | mailto:m.willson@mwcommunication

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>