Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Turns Sewage Farms into Power Plants

29.04.2002


Researchers at the University of Warwick’s Warwick Process Technology Group have devised a process that turns wet waste from sewage farms and paper mills into a source of power.



University of Warwick researcher Dr Ashok Bhattacharya and his team are part of a Europe wide consortium that have cracked the problem of how to extract very pure levels of hydrogen from wet bio-matter, such as sewage or paper mill waste. This very pure hydrogen can then be used in “fuel cells” to power homes, factories and cars. The research consortium have now received £2.5million in European funding to work up their lab based solution into larger prototypes. Eventually the research team’s “plated membrane reactors” could be built as small industrial units, no bigger than a large room in some cases, and added directly to the sites of sewage plants or paper mills.

Previous attempts to extract pure hydrogen from bio-matter to power fuel cells have only met with limited success, even with dry material. The new process extracts very pure hydrogen from the more difficult but exceedingly abundant wet bio-matter and even makes a virtue of the water content of the material to generate even more pure hydrogen.


First the waste biomass is gasified breaking it down into its Methane CH4, water H2O, Carbonmonoxide CO, and carbondioxide CO2 and some hydrogen. All these gases are then fed into a reactor which uses them in a chemical reaction which extracts the hydrogen from both the methane and the water. In normal circumstances this reaction would reach an equilibrium and simply stop once a certain amount of hydrogen had been generated. However the research team uses a palladium coated ceramic semi permeable membrane as part of the reactor which only lets hydrogen pass through. This allows the researchers to both harvest very pure hydrogen from the system (it can be over 95% pure) and to keep the reaction going as long as it is fed with the waste biomass as the hydrogen never builds up to the point where a chemical equilibrium would be reached thus stopping the reaction.

The hydrogen produced by this very energy efficient method can then be used to power hydrogen fuel cells. This process is also much cleaner than traditional production of H2 as it does not use up fossil fuels, thus it produces no more CO2 than would be produced naturally from the material biodegrading and it produces no other emissions such as nitrous oxides.

Other novel engineering in the process includes the use of a coated nanocrystaline catalyst to accelerate the reaction, and particular methods to manage heat transfer and pressure.

The research project brings together the University of Warwick’s Warwick Process Technology Group team with Dutch, German and UK firms. In particular the Dutch firm BTG and the University of Twente have contributed to the gasification process and the Sheffield firm Dytech have contributed to the highly engineered porous ceramics used in the reactor.

Peter Dunn | mailto:m.willson@mwcommunication

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>