Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At the root of nutrient limitation, ecosystems are not as different as they seem

13.11.2007
Anyone who has thrown a backyard barbecue knows that hot dogs are inexplicably packaged in different numbers than buns — eight hot dogs per pack versus 10 hot dog buns. Put in ecological terms, this means that weenie roasts are “hot-dog limited” — the extra buns are worthless without hot dogs to fill them.

Such limiting factors are a cornerstone of natural ecology, where phosphorus or nitrogen limits plant production in most ecosystems. According to the customary model, the relative importance of these two key nutrients varies by ecosystem; but a group of researchers led by Arizona State University professor James Elser has found that this view might need to be updated.

Their paper, “Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems,” is highlighted in the News and Views section of the October 25 edition of Nature. The most comprehensive study of its kind, this meta-analysis of more than 300 publications in the field of nutrient limitation in ecosystems was recently published online in the journal Ecology Letters.

Like all living things, plants require a number of chemical elements in order to flourish, including carbon, hydrogen and oxygen. They also need nitrogen, a building block of proteins; and phosphorus, used to make the nucleotides that compose DNA and RNA. The interplay of these elements affects the growth of the food web’s foundational plants, and so understanding their interplay is of vital environmental and commercial concern.

Nitrogen and phosphorus, both widely used in fertilizers, must be in proper balance to be effective. Adding nitrogen alone to an ecosystem is helpful only up to a point, after which plants stop benefiting unless phosphorus also is added. If such a system responds positively to the initial nitrogen addition, it is said to be “nitrogen-limited,” because the availability of nitrogen instantaneously constrains the productivity of the ecosystem. The converse is true in “phosphorus-limited” systems.

Plant production in both cases is limited by the nutrient in shortest supply, a principle known as von Liebig's law of the minimum. Because of their characteristic differences in size, makeup, geology and other factors, different kinds of ecosystems have long been thought to differ widely in the strength and the nature of their nutrient limitation; for example, conventional wisdom has held that freshwater lakes are primarily phosphorus-limited, while oceans along with terrestrial forests and grasslands were believed to be nitrogen-limited.

Yet that is not what Elser’s group found. Rather, their data reveals that the three environments are surprisingly similar, and that the balance of nitrogen and phosphorus within each ecosystem conforms to a different pattern than previously expected.

“Our findings don’t support conventional views of ecosystem nutrient limitation,” said Elser, a professor of ecology, evolution and environmental science at ASU. “They don’t, for example, confirm the rule of thumb that in freshwaters phosphorus is more limiting than nitrogen.”

Instead, Elser’s group found that nitrogen and phosphorus are in fact equally important in freshwater systems, and that phosphorus is just as important as nitrogen in terrestrial ecosystems as well.

“This is in contradiction to conventional wisdom, which seems to emphasize N on land while disregarding P,” Elser said.

The determining factor, according to Elser, is simplicity. Underlying all of the splendid diversity of the world’s ecosystems — whether soggy, arid, terrestrial, aquatic, arboreal or algal — is the simple unifying fact that all plants share a common core of biochemical machinery. That machinery is composed of proteins and nucleotides, meaning that all plants require nitrogen and phosphorus within a limited range of natural proportions.

“Thus, N and P both play a major role in limiting production, no matter where you look,” Elser said.

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>