Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At the root of nutrient limitation, ecosystems are not as different as they seem

13.11.2007
Anyone who has thrown a backyard barbecue knows that hot dogs are inexplicably packaged in different numbers than buns — eight hot dogs per pack versus 10 hot dog buns. Put in ecological terms, this means that weenie roasts are “hot-dog limited” — the extra buns are worthless without hot dogs to fill them.

Such limiting factors are a cornerstone of natural ecology, where phosphorus or nitrogen limits plant production in most ecosystems. According to the customary model, the relative importance of these two key nutrients varies by ecosystem; but a group of researchers led by Arizona State University professor James Elser has found that this view might need to be updated.

Their paper, “Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems,” is highlighted in the News and Views section of the October 25 edition of Nature. The most comprehensive study of its kind, this meta-analysis of more than 300 publications in the field of nutrient limitation in ecosystems was recently published online in the journal Ecology Letters.

Like all living things, plants require a number of chemical elements in order to flourish, including carbon, hydrogen and oxygen. They also need nitrogen, a building block of proteins; and phosphorus, used to make the nucleotides that compose DNA and RNA. The interplay of these elements affects the growth of the food web’s foundational plants, and so understanding their interplay is of vital environmental and commercial concern.

Nitrogen and phosphorus, both widely used in fertilizers, must be in proper balance to be effective. Adding nitrogen alone to an ecosystem is helpful only up to a point, after which plants stop benefiting unless phosphorus also is added. If such a system responds positively to the initial nitrogen addition, it is said to be “nitrogen-limited,” because the availability of nitrogen instantaneously constrains the productivity of the ecosystem. The converse is true in “phosphorus-limited” systems.

Plant production in both cases is limited by the nutrient in shortest supply, a principle known as von Liebig's law of the minimum. Because of their characteristic differences in size, makeup, geology and other factors, different kinds of ecosystems have long been thought to differ widely in the strength and the nature of their nutrient limitation; for example, conventional wisdom has held that freshwater lakes are primarily phosphorus-limited, while oceans along with terrestrial forests and grasslands were believed to be nitrogen-limited.

Yet that is not what Elser’s group found. Rather, their data reveals that the three environments are surprisingly similar, and that the balance of nitrogen and phosphorus within each ecosystem conforms to a different pattern than previously expected.

“Our findings don’t support conventional views of ecosystem nutrient limitation,” said Elser, a professor of ecology, evolution and environmental science at ASU. “They don’t, for example, confirm the rule of thumb that in freshwaters phosphorus is more limiting than nitrogen.”

Instead, Elser’s group found that nitrogen and phosphorus are in fact equally important in freshwater systems, and that phosphorus is just as important as nitrogen in terrestrial ecosystems as well.

“This is in contradiction to conventional wisdom, which seems to emphasize N on land while disregarding P,” Elser said.

The determining factor, according to Elser, is simplicity. Underlying all of the splendid diversity of the world’s ecosystems — whether soggy, arid, terrestrial, aquatic, arboreal or algal — is the simple unifying fact that all plants share a common core of biochemical machinery. That machinery is composed of proteins and nucleotides, meaning that all plants require nitrogen and phosphorus within a limited range of natural proportions.

“Thus, N and P both play a major role in limiting production, no matter where you look,” Elser said.

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>