Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At the root of nutrient limitation, ecosystems are not as different as they seem

13.11.2007
Anyone who has thrown a backyard barbecue knows that hot dogs are inexplicably packaged in different numbers than buns — eight hot dogs per pack versus 10 hot dog buns. Put in ecological terms, this means that weenie roasts are “hot-dog limited” — the extra buns are worthless without hot dogs to fill them.

Such limiting factors are a cornerstone of natural ecology, where phosphorus or nitrogen limits plant production in most ecosystems. According to the customary model, the relative importance of these two key nutrients varies by ecosystem; but a group of researchers led by Arizona State University professor James Elser has found that this view might need to be updated.

Their paper, “Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems,” is highlighted in the News and Views section of the October 25 edition of Nature. The most comprehensive study of its kind, this meta-analysis of more than 300 publications in the field of nutrient limitation in ecosystems was recently published online in the journal Ecology Letters.

Like all living things, plants require a number of chemical elements in order to flourish, including carbon, hydrogen and oxygen. They also need nitrogen, a building block of proteins; and phosphorus, used to make the nucleotides that compose DNA and RNA. The interplay of these elements affects the growth of the food web’s foundational plants, and so understanding their interplay is of vital environmental and commercial concern.

Nitrogen and phosphorus, both widely used in fertilizers, must be in proper balance to be effective. Adding nitrogen alone to an ecosystem is helpful only up to a point, after which plants stop benefiting unless phosphorus also is added. If such a system responds positively to the initial nitrogen addition, it is said to be “nitrogen-limited,” because the availability of nitrogen instantaneously constrains the productivity of the ecosystem. The converse is true in “phosphorus-limited” systems.

Plant production in both cases is limited by the nutrient in shortest supply, a principle known as von Liebig's law of the minimum. Because of their characteristic differences in size, makeup, geology and other factors, different kinds of ecosystems have long been thought to differ widely in the strength and the nature of their nutrient limitation; for example, conventional wisdom has held that freshwater lakes are primarily phosphorus-limited, while oceans along with terrestrial forests and grasslands were believed to be nitrogen-limited.

Yet that is not what Elser’s group found. Rather, their data reveals that the three environments are surprisingly similar, and that the balance of nitrogen and phosphorus within each ecosystem conforms to a different pattern than previously expected.

“Our findings don’t support conventional views of ecosystem nutrient limitation,” said Elser, a professor of ecology, evolution and environmental science at ASU. “They don’t, for example, confirm the rule of thumb that in freshwaters phosphorus is more limiting than nitrogen.”

Instead, Elser’s group found that nitrogen and phosphorus are in fact equally important in freshwater systems, and that phosphorus is just as important as nitrogen in terrestrial ecosystems as well.

“This is in contradiction to conventional wisdom, which seems to emphasize N on land while disregarding P,” Elser said.

The determining factor, according to Elser, is simplicity. Underlying all of the splendid diversity of the world’s ecosystems — whether soggy, arid, terrestrial, aquatic, arboreal or algal — is the simple unifying fact that all plants share a common core of biochemical machinery. That machinery is composed of proteins and nucleotides, meaning that all plants require nitrogen and phosphorus within a limited range of natural proportions.

“Thus, N and P both play a major role in limiting production, no matter where you look,” Elser said.

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>