Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered weathering process could mitigate global warming

09.11.2007
Researchers invent technology to accelerate Earth's own solution to greenhouse gas accumulation

Researchers at Harvard University and Pennsylvania State University have invented a technology, inspired by nature, to reduce the accumulation of atmospheric carbon dioxide (CO2) caused by human emissions.

By electrochemically removing hydrochloric acid from the ocean and then neutralizing the acid by reaction with silicate (volcanic) rocks, the researchers say they can accelerate natural chemical weathering, permanently transferring CO2 from the atmosphere to the ocean. Unlike other ocean sequestration processes, the new technology does not further acidify the ocean and may be beneficial to coral reefs.

The innovative approach to tackling climate change is reported in the Nov. 7 issue of the journal Environmental Science and Technology by Kurt Zenz House, a Ph.D. candidate in Harvard's Department of Earth and Planetary Sciences; Christopher H. House, associate professor of geosciences at Pennsylvania State University; Daniel P. Schrag, professor of earth and planetary sciences in Harvard's Faculty of Arts and Sciences, professor of environmental science and engineering in Harvard's School of Engineering and Applied Sciences, and director of the Harvard University Center for the Environment; and Michael J. Aziz, Gordon McKay Professor of Materials Science in Harvard's School of Engineering and Applied Sciences.

"The technology involves selectively removing acid from the ocean in a way that might enable us to turn back the clock on global warming -- removing CO2 directly from the atmosphere while simultaneously limiting the rate at which man-made CO2 emissions are acidifying the ocean," Kurt Zenz House says. "Essentially, our technology dramatically accelerates a cleaning process that Nature herself uses for greenhouse gas accumulation."

In natural silicate weathering, atmospheric carbon dioxide dissolves into fresh water, forming a weak carbonic acid. This acid is neutralized as rain water percolates through continental rocks, producing an alkaline solution of carbonate salts. The dissolution products eventually flow into the ocean, where the added alkalinity enables the ocean to hold the dissolved carbon instead of releasing it into the atmosphere. As weathering dissolves more continental rock, more carbon is permanently transferred from the atmosphere to the ocean and ultimately to the sediments.

"In the engineered weathering process we have found a way to swap the weak carbonic acid with a much stronger one (hydrochloric acid) and thus accelerate the pace to industrial rates," Kurt Zenz House says. "To minimize the potential for adverse side effects on the environment we combine it with other chemical processes, the net result of which is identical to the natural weathering process. As a result, the ocean's alkalinity would increase, enabling the uptake and storage of more atmospheric CO2 in the form of bicarbonate, the most plentiful and innocuous form of carbon already dissolved in the earth's waters. That means we may be able to safely and permanently remove excess CO2 in a matter of decades rather than millennia."

Unlike other climate engineering schemes that propose reflecting sunlight back into space to cool the planet, the weathering approach counteracts the continued ocean acidification that threatens coral reefs and their rich biological communities. Moreover, the process works equally well on all sources of CO2, including the two-thirds of human emissions that do not emanate from power plants, and could be run in remote locations and powered by stranded energy, such as geothermal and flared natural gas.

The team cautions, however, that while they believe their scheme for reducing global warming is achievable, implementation would be ambitious, costly, and would carry some environmental risks that require further study. Replicating natural weathering would involve building dozens of facilities, akin to large chlorine gas industrial plants, on coasts of volcanic rock.

"The least risky trajectory is to significantly cut our carbon dioxide emissions -- but we may not be able to cut them rapidly enough to avoid unacceptable levels of climate change," says Aziz. "If it looks like we're not going to make it, the 'House Process' has the potential to let us rescind a portion of those emissions while mitigating some of the chemical impacts the excess CO2 will have on the oceans. It won't be ready in time, though, if we wait until we're sure we'll need it before pursuing R&D on the technical and environmental issues involved."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>