Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists enhance Mother Nature's carbon handling mechanism

08.11.2007
Taking a page from Nature herself, a team of researchers developed a method to enhance removal of carbon dioxide from the atmosphere and place it in the Earth's oceans for storage.

Unlike other proposed ocean sequestration processes, the new technology does not make the oceans more acid and may be beneficial to coral reefs. The process is a manipulation of the natural weathering of volcanic silicate rocks. Reporting in today's (Nov. 7) issue of Environmental Science and Technology, the Harvard and Penn State team explained their method.

"The technology involves selectively removing acid from the ocean in a way that might enable us to turn back the clock on global warming," says Kurt Zenz House, graduate student in Earth and planetary sciences, Harvard University. "Essentially, our technology dramatically accelerates a cleaning process that Nature herself uses for greenhouse gas accumulation."

In natural silicate weathering, carbon dioxide from the atmosphere dissolves in fresh water and forms weak carbonic acid. As the water percolates through the soil and rocks, the carbonic acid converts to a solution of alkaline carbonate salts. This water eventually flows into the ocean and increases its alkalinity. An alkaline ocean can hold dissolved carbon, while an acidic one will release the carbon back into the atmosphere. The more weathering, the more carbon is transferred to the ocean where some of it eventually becomes part of the sea bottom sediments.

"In the engineered weathering process we have found a way to swap the weak carbonic acid with a much stronger one (hydrochloric acid) and thus accelerate the pace to industrial rates," says House.

The researchers minimize the potential for environmental problems by combining the acid removal with silicate rock weathering mimicking the natural process. The more alkaline ocean can store carbon as bicarbonate, the most plentiful and innocuous form of carbon in the oceans.

According to House, this would allow removal of excess carbon dioxide from the atmosphere in a matter of decades rather than millennia.

Besides removing the greenhouse gas carbon dioxide from the atmosphere, this technique would counteract the continuing acidification of the oceans that threatens coral reefs and their biological communities. The technique is adaptable to operation in remote areas on geothermal or natural gas and is global rather than local. Unlike carbon dioxide scrubbers on power plants, the process can as easily remove naturally generated carbon dioxide as that produced from burning fossil fuel for power.

The researchers, Kurt House; Daniel P. Schrag, director, Harvard University Center for the Environment and professor of Earth and planetary sciences; Michael J. Aziz, the Gordon McKay professor of material sciences, all at Harvard University and Kurt House's brother, Christopher H. House, associate professor of geosciences, Penn State, caution that while they believe their scheme for reducing global warming is achievable, implementation would be ambitious, costly and would carry some environmental risks that require further study. The process would involve building dozens of facilities similar to large chlorine gas industrial plants, on volcanic rock coasts.

"This work shows how we can remove carbon dioxide on relevant timescales, but more work is be needed to bring down the cost and minimize other environmental effects," says Christopher H. House.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>