Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change could diminish drinking water more than expected

08.11.2007
As sea levels rise, coastal communities could lose up to 50 percent more of their fresh water supplies than previously thought, according to a new study from Ohio State University.

Hydrologists here have simulated how saltwater will intrude into fresh water aquifers, given the sea level rise predicted by the Intergovernmental Panel on Climate Change (IPCC). The IPCC has concluded that within the next 100 years, sea level could rise as much as 23 inches, flooding coasts worldwide.

Scientists previously assumed that, as saltwater moved inland, it would penetrate underground only as far as it did above ground.

But this new research shows that when saltwater and fresh water meet, they mix in complex ways, depending on the texture of the sand along the coastline. In some cases, a zone of mixed, or brackish, water can extend 50 percent further inland underground than it does above ground.

Like saltwater, brackish water is not safe to drink because it causes dehydration. Water that contains less than 250 milligrams of salt per liter is considered fresh water and safe to drink.

Motomu Ibaraki, associate professor of earth sciences at Ohio State, led the study. Graduate student Jun Mizuno presented the results Tuesday, October 30, 2007, at the Geological Society of America meeting in Denver.

“Almost 40 percent of the world population lives in coastal areas, less than 60 kilometers from the shoreline,” Mizuno said. “These regions may face loss of freshwater resources more than we originally thought.”

“Most people are probably aware of the damage that rising sea levels can do above ground, but not underground, which is where the fresh water is,” Ibaraki said. “Climate change is already diminishing fresh water resources, with changes in precipitation patterns and the melting of glaciers. With this work, we are pointing out another way that climate change can potentially reduce available drinking water. The coastlines that are vulnerable include some of the most densely populated regions of the world.”

In the United States, lands along the East Coast and the Gulf of Mexico -- especially Florida and Louisiana -- are most likely to be flooded as sea levels rise. Vulnerable areas worldwide include Southeast Asia, the Middle East, and northern Europe.

“Almost 40 percent of the world population lives in coastal areas, less than 60 kilometers from the shoreline,” Mizuno said. “These regions may face loss of freshwater resources more than we originally thought.”

Scientists have used the IPCC reports to draw maps of how the world's coastlines will change as waters rise, and they have produced some of the most striking images of the potential consequences of climate change.

Ibaraki said that he would like to create similar maps that show how the water supply could be affected.

That's not an easy task, since scientists don't know exactly where all of the world's fresh water is located, or how much is there. Nor do they know the details of the subterranean structure in many places.

One finding of this study is that saltwater will penetrate further into areas that have a complex underground structure.

Typically, coastlines are made of different sandy layers that have built up over time, Ibaraki explained. Some layers may contain coarse sand and others fine sand. Fine sand tends to block more water, while coarse sand lets more flow through.

The researchers simulated coastlines made entirely of coarse or fine sand, and different textures in between. They also simulated more realistic, layered underground structures.

The simulation showed that, the more layers a coastline has, the more the saltwater and fresh water mix. The mixing causes convection -- similar to the currents that stir water in the open sea. Between the incoming saltwater and the inland fresh water, a pool of brackish water forms.

Further sea level rise increases the mixing even more.

Depending on how these two factors interact, underground brackish water can extend 10 to 50 percent further inland than the saltwater on the surface.

According to the United States Geological Survey, about half the country gets its drinking water from groundwater. Fresh water is also used nationwide for irrigating crops.

“In order to obtain cheap water for everybody, we need to use groundwater, river water, or lake water,” Ibaraki said. “But all those waters are disappearing due to several factors --including an increase in demand and climate change.”

One way to create more fresh water is to desalinate saltwater, but that's expensive to do, he said.

“To desalinate, we need energy, so our water problem would become an energy problem in the future.”

Motomu Ibaraki | EurekAlert!
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

New discovery: Common jellyfish is actually two species

22.11.2017 | Life Sciences

Researchers discover specific tumor environment that triggers cells to metastasize

22.11.2017 | Life Sciences

A material with promising properties

22.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>