Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-ever precise data on Yangtze water quality

05.11.2007
For the first time, a team including foreign scientists has been authorized by the Chinese government to study water quality on the lower reaches of the Yangtze River.

Hundreds of water and sediment samples collected at the end of 2006 have now been analysed by Eawag. The results are remarkable: although pollutant loads are in some cases very heavy, concentrations in the river known as China’s main artery are in the same range as worldwide known from other large rivers.

In the autumn of 2006, as part of the Yangtze Freshwater Dolphin Expedition, Eawag researchers collected water and sediment samples along a 1500-kilometre stretch of China’s longest river. These samples have now been analysed, and the results were presented by the scientistes Michael Berg, Eawag and Wang Ding, China today in Bern at an event organized by the Zurich-based baiji.org Foundation.

Baiji considered extinct

At the media conference, the leaders of the joint Chinese/Swiss expedition explained the background to, and the significance of, this unique mission. A documentary directed by Florian Guthknecht showed the research team at work during the survey, which confirmed what had already been feared: the team declared the Yangtze River baiji, or white-flag dolphin, “functionally extinct” – a conclusion that caused dismay worldwide and especially in China. However, based on the latest findings, the disappearance of the baiji is not attributable to toxic chemicals in the river – pollution is, at least, certainly not the main factor.

Concentrations comparable to other rivers

In general, concentrations of man-made pollutants in the Yangtze are comparable to those found in other large rivers around the world. Although high concentrations of certain elements and organic compounds were measured at some points, these substances were mostly diluted further downstream. Concentrations of several toxic elements such as arsenic, thallium and antimony increased along the course of the river. Heavy metal concentrations in the Yangtze are currently about two to eight times lower than in the Rhine 30 years ago, when pollution levels peaked. European Union guidelines for several heavy metals are all higher than the concentrations found in the Yangtze, suggesting that even today pollution levels are still significantly higher in many European rivers.

Levels increasing

While the trend has been widely reversed in Europe, with levels of pollutants declining, they are generally still increasing in China. For example, nitrogen concentrations have approximately doubled over the past 20 years. In Shanghai, concentrations of dissolved nitrogen were twice as high as at the Three Gorges Dam, reflecting the increasing use of mineral fertilizers in agriculture, while phosphate concentrations remained constant at a relatively low level along this section of the river. Of the 236 organic chemicals studied, only a few were found locally at high levels. Many of the persistent substances used in agriculture occur only seasonally and were detected in trace concentrations.

4.6 tonnes of arsenic per day

The fact that concentrations of most pollutants appear low by comparison with other major rivers is party due to the vast quantities of water discharged by the Yangtze (yearly average at the mouth = 39 000 m3/second; for comparison, yearly average discharge of the Rhine at Basel = 1050 m3/second). Accordingly, dilution of the anthropogenic chemical inputs means that there is no immediate risk of damage to the ecosystem. However, where the river enters the East China Sea, the huge pollutant loads are expected to have devastating effects: each day, 1500 tonnes of nitrogen is discharged, causing eutrophication and growth of blue-green algae in the coastal waters, while toxic metals such as arsenic (4.6 tonnes discharged per day, despite the low concentrations) and persistent organic compounds accumulate, entering the food chain of the productive shelf areas.

Growing pressure on the Yangtze

Although it is not possible to rule out synergistic effects between different chemicals, long term effects or impacts of endocrine disruptors, which could not be demonstrated by this study, the results provide no direct evidence of a link between chemical water quality and the disappearance of the Yangtze River baiji or the decline of the Chinese sturgeon or the endemic finless porpoise. These losses must rather be attributable to a variety of circumstances, among which the deterioration of chemical water quality may however be a contributory factor. Other factors include the destruction of habitats, heavy canalization, the cutting-off of tributaries (“hatchery” areas for many fish species) by dams, the drainage of lakes and wetlands for agriculture, overfishing and unselective fishing methods, and heavy shipping traffic. In general, pressure on the Yangtze is growing as a result of industrialization, rising living standards, artificial irrigation and increasing power generation. The planned large-scale diversion of water to the Yellow River valley in the North would also have serious consequences. Water shortages in the Yellow River have become so severe that it fails to reach the sea for several months each year.

In the Yangtze, concentrations of nitrogen, metals and organic compounds are increasing, as shown by comparisons with earlier measurements in the literature. This will further increase the pressure on the river ecosystem – and especially on the coastal waters of the East China Sea – and also affect the quality of groundwater and drinking water supplies. It is therefore essential to monitor these developments and take “at-source” measures as soon as possible so that current trends can be reversed.

Andri Bryner | alfa
Further information:
http://www.baiji.org
http://www.eawag.ch

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>