Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Norwegian CO2 actors join forces

25.10.2007
Aker Kværner, SINTEF and NTNU are to cooperate on the development of new CO2 technology. The Trondheim scientists claim that the new agreement could produce cuts in emissions that would make a real difference on a global scale.

A central aspect of the agreement to cooperate is a plan for SINTEF and NTNU to develop and test more efficient chemicals for scrubbing CO2 from flue gases or other industrial processes.

The chemicals will be specially adapted to Aker Kværner’s concept for CO2
capture from coal- and gas-fired power stations, which is called “Just Catch” technology.

Could break the monopoly

“By signing a contract with Aker Kværner on the chemical side, we are helping to qualify the company to supply CO2 capture plants to the world market, on which there is virtually a monopoly today. With its cost-effective technology the Norwegian company will be able to force prices down and ensure that CO2 capture is adopted more rapidly,” say Nils Røkke, director of gas technology research at SINTEF, and Hallvard Svendsen, a professor of chemistry at NTNU.

The calculations made by SINTEF and NTNU show that the world will need about 7,500 capture plants for coal- and gas-fired power stations by 2100, as well as greater use of renewable sources of energy and more efficient energy utilisation, if we are to prevent the world’s annual mean temperature from rising by more than two degrees.

According to figures from SINTEF and NTNU, annual cuts in the CO2 emitted by 2.5 percent of these plants would be equivalent to total current Norwegian CO2 emissions as well as the annual CO2 emissions produced by our oil and gas exports at present.

Left out of discussion

Røkke and Svendsen believe that the potential for Norwegian industry to make a contribution to efficient CO2 capture technology is not being paid enough attention in the national debate about environmental matters.

“Of course we should also be implementing measures that will reduce this country's own emissions. But it is as a technology supplier on the world market that Norway can contribute to CO2 cuts that will make a difference on a global scale,” say the two.

Scrubbing flue gases

Today, only a few international companies are capable of supplying plants that capture CO2 from coal- and gas-fired power stations. These are solutions that are based on “scrubbing” CO2 out of the stations’ flue gases, using water-soluble chemicals called amines.

SINTEF and NTNU are to develop similar and alternative chemicals for Aker Kværner in the course of the new cooperation agreement. The plan is to develop new chemical systems that will bmore efficient, more stable and less damaging to nature than the amines in current use.

“We have a very good point of departure. Thanks to strategic long-term research funding from the Research Council of Norway and Gassnova, as well as our participation in several EU projects, we have built up a high level of expertise in this field at SINTEF and NTNU,” say Røkke and Svendsen.

“We have sown a lot of seed, which we hope will contribute to what we see as Norway’s equivalent of the USA’s moon landing, and our vision of Norwegian technology leadership in climate technology,” they add.

Spin-off chemical company

The agreement that the two institutions have signed with Aker Kværner includes plans for establishing a jointly owned company that will own the rights to the new chemical systems and sell them to Aker Kværner and other users.

The agreement also includes plans for further expansion of the laboratories that SINTEF and NTNU use in their CO2 capture research. This will strengthen the global toolbox for developing efficient, new and cheap climate technologies, claim the two research institutions.

SINTEF and NTNU have also been estimating the value of a future market for CO2 capture plants. The point of departure for their calculations is that around 7500 such plants could be constructed by 2100.

“A one percent share of such a market would mean a turnover of NOK 240 billion by 2100, so Norwegian society would be well repaid for its investments in research in this field,” say Røkke and Svendsen,

This is the “Just Catch” technology

Aker Kværner has been developing its own CO2 capture technology since 1991, and has been an active driving force behind efforts to develop new green power generation solutions.

In 2005, the company decided to go in for Just Catch technology in a big way. Aker Kværner has established a major development project in collaboration with 12 industrial partners and Gassnova.

“This project has enabled us to identify several technical improvements that would be capable of reducing both the construction and operating costs of such CO2 capture plants,” says Oscar Fredrik Graff, gas technology director at Aker Kværner.

According to Graff, the technical improvements identified by the company can be summarised as follows:

•Development and testing of optimum amine mixtures for different CO2sources
•Efficient integration of heat into the process
•Selection of new types of pumps and heat exchangers
•More compact and efficient plants
•Minimising the environmental impact of the plant.
It is on the first of these items that Aker Kværner is about to expand its ongoing cooperation with SINTEF and NTNU.

Great expectations

“In the course of the past six months we have considered a number of different partners in amine development. We analysed several international players in this field, and finally came to the conclusion that SINTEF and NTNU could offer us the best support in this task. Choosing the best amine mixture is vital in plants of this sort. The right choice will offer stable operating conditions, and reduce energy requirements and other operating costs. Now we are looking forward to full-speed cooperation with SINTEF and NTNU,” says Graff.

Historic efforts
Aker Kværner already has around 40 engineers working on the development of Just Catch technology, in addition to partners and other suppliers engaged by the company.

“This is a historic effort for our company, and it has made going to work really enjoyable. Every day I meet colleagues who say that they are “working for the climate,” says Graff. Aker Kværner has also received massive support from the Norwegian Industry employers organisation, the Norwegian Federation of Trade Unions and the environmental organisations.

116% scrubbing!
Aker Kværner is also developing a special version of its Just Catch technology that uses biomass to produce the energy needed for CO2 capture.

The scrubbing plant would normally use energy from the power station. By scrubbing both the power station’s flue gases and those from the bio-energy plant, the scrubber will also remove “natural” CO2, i.e. CO2 that the timber in the fuel would otherwise have released in the course of its natural breakdown.

This solution, known as Just Catch Bio, is thus potentially capable of removing 116% of the CO2 emissions from a gas-fired power station.

Can be retrofitted
“One advantage of Just Catch technology is that it can be retrofitted to existing power stations. If the cuts in CO2 emission that many countries are aiming for are to have any credibility, they will require flue gases from existing plants to be scrubbed on a large scale. This will open up a large market for this technology,” says Graff.

Just Catch technology can be utilised on a wide range of sources of CO2, such as those from gas- and coal-fired power stations, biopower, refineries and the cement industry.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>