Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Norwegian CO2 actors join forces

25.10.2007
Aker Kværner, SINTEF and NTNU are to cooperate on the development of new CO2 technology. The Trondheim scientists claim that the new agreement could produce cuts in emissions that would make a real difference on a global scale.

A central aspect of the agreement to cooperate is a plan for SINTEF and NTNU to develop and test more efficient chemicals for scrubbing CO2 from flue gases or other industrial processes.

The chemicals will be specially adapted to Aker Kværner’s concept for CO2
capture from coal- and gas-fired power stations, which is called “Just Catch” technology.

Could break the monopoly

“By signing a contract with Aker Kværner on the chemical side, we are helping to qualify the company to supply CO2 capture plants to the world market, on which there is virtually a monopoly today. With its cost-effective technology the Norwegian company will be able to force prices down and ensure that CO2 capture is adopted more rapidly,” say Nils Røkke, director of gas technology research at SINTEF, and Hallvard Svendsen, a professor of chemistry at NTNU.

The calculations made by SINTEF and NTNU show that the world will need about 7,500 capture plants for coal- and gas-fired power stations by 2100, as well as greater use of renewable sources of energy and more efficient energy utilisation, if we are to prevent the world’s annual mean temperature from rising by more than two degrees.

According to figures from SINTEF and NTNU, annual cuts in the CO2 emitted by 2.5 percent of these plants would be equivalent to total current Norwegian CO2 emissions as well as the annual CO2 emissions produced by our oil and gas exports at present.

Left out of discussion

Røkke and Svendsen believe that the potential for Norwegian industry to make a contribution to efficient CO2 capture technology is not being paid enough attention in the national debate about environmental matters.

“Of course we should also be implementing measures that will reduce this country's own emissions. But it is as a technology supplier on the world market that Norway can contribute to CO2 cuts that will make a difference on a global scale,” say the two.

Scrubbing flue gases

Today, only a few international companies are capable of supplying plants that capture CO2 from coal- and gas-fired power stations. These are solutions that are based on “scrubbing” CO2 out of the stations’ flue gases, using water-soluble chemicals called amines.

SINTEF and NTNU are to develop similar and alternative chemicals for Aker Kværner in the course of the new cooperation agreement. The plan is to develop new chemical systems that will bmore efficient, more stable and less damaging to nature than the amines in current use.

“We have a very good point of departure. Thanks to strategic long-term research funding from the Research Council of Norway and Gassnova, as well as our participation in several EU projects, we have built up a high level of expertise in this field at SINTEF and NTNU,” say Røkke and Svendsen.

“We have sown a lot of seed, which we hope will contribute to what we see as Norway’s equivalent of the USA’s moon landing, and our vision of Norwegian technology leadership in climate technology,” they add.

Spin-off chemical company

The agreement that the two institutions have signed with Aker Kværner includes plans for establishing a jointly owned company that will own the rights to the new chemical systems and sell them to Aker Kværner and other users.

The agreement also includes plans for further expansion of the laboratories that SINTEF and NTNU use in their CO2 capture research. This will strengthen the global toolbox for developing efficient, new and cheap climate technologies, claim the two research institutions.

SINTEF and NTNU have also been estimating the value of a future market for CO2 capture plants. The point of departure for their calculations is that around 7500 such plants could be constructed by 2100.

“A one percent share of such a market would mean a turnover of NOK 240 billion by 2100, so Norwegian society would be well repaid for its investments in research in this field,” say Røkke and Svendsen,

This is the “Just Catch” technology

Aker Kværner has been developing its own CO2 capture technology since 1991, and has been an active driving force behind efforts to develop new green power generation solutions.

In 2005, the company decided to go in for Just Catch technology in a big way. Aker Kværner has established a major development project in collaboration with 12 industrial partners and Gassnova.

“This project has enabled us to identify several technical improvements that would be capable of reducing both the construction and operating costs of such CO2 capture plants,” says Oscar Fredrik Graff, gas technology director at Aker Kværner.

According to Graff, the technical improvements identified by the company can be summarised as follows:

•Development and testing of optimum amine mixtures for different CO2sources
•Efficient integration of heat into the process
•Selection of new types of pumps and heat exchangers
•More compact and efficient plants
•Minimising the environmental impact of the plant.
It is on the first of these items that Aker Kværner is about to expand its ongoing cooperation with SINTEF and NTNU.

Great expectations

“In the course of the past six months we have considered a number of different partners in amine development. We analysed several international players in this field, and finally came to the conclusion that SINTEF and NTNU could offer us the best support in this task. Choosing the best amine mixture is vital in plants of this sort. The right choice will offer stable operating conditions, and reduce energy requirements and other operating costs. Now we are looking forward to full-speed cooperation with SINTEF and NTNU,” says Graff.

Historic efforts
Aker Kværner already has around 40 engineers working on the development of Just Catch technology, in addition to partners and other suppliers engaged by the company.

“This is a historic effort for our company, and it has made going to work really enjoyable. Every day I meet colleagues who say that they are “working for the climate,” says Graff. Aker Kværner has also received massive support from the Norwegian Industry employers organisation, the Norwegian Federation of Trade Unions and the environmental organisations.

116% scrubbing!
Aker Kværner is also developing a special version of its Just Catch technology that uses biomass to produce the energy needed for CO2 capture.

The scrubbing plant would normally use energy from the power station. By scrubbing both the power station’s flue gases and those from the bio-energy plant, the scrubber will also remove “natural” CO2, i.e. CO2 that the timber in the fuel would otherwise have released in the course of its natural breakdown.

This solution, known as Just Catch Bio, is thus potentially capable of removing 116% of the CO2 emissions from a gas-fired power station.

Can be retrofitted
“One advantage of Just Catch technology is that it can be retrofitted to existing power stations. If the cuts in CO2 emission that many countries are aiming for are to have any credibility, they will require flue gases from existing plants to be scrubbed on a large scale. This will open up a large market for this technology,” says Graff.

Just Catch technology can be utilised on a wide range of sources of CO2, such as those from gas- and coal-fired power stations, biopower, refineries and the cement industry.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>