Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

North Atlantic slows on the uptake of CO2

23.10.2007
Further evidence for the decline of the oceans’ historical role as an important sink for atmospheric carbon dioxide is supplied by new research by environmental scientists from the University of East Anglia.

Since the industrial revolution, much of the CO2 we have released into the atmosphere has been taken up by the world’s oceans which act as a strong ‘sink’ for the emissions.

This has slowed climate change. Without this uptake, CO2 levels would have risen much faster and the climate would be warming more rapidly.

A paper in the Journal of Geophysical Research by Dr Ute Schuster and Professor Andrew Watson of UEA’s School of Environmental Sciences again raises concerns that the oceans might be slowing their uptake of CO2.

Results of their decade-long study in the North Atlantic show that the uptake in this ocean, which is the most intense sink for atmospheric CO2, slowed down dramatically between the mid-nineties and the early 2000s.

A slowdown in the sink in the Southern Ocean had already been inferred, but the change in the North Atlantic is greater and more sudden, and could be responsible for a substantial proportion of the observed weakening.

The observations were made from merchant ships equipped with automatic instruments for measuring carbon dioxide in the water. Much of the data has come from a container ship carrying bananas from the West Indies to the UK, making a round-trip of the Atlantic every month. The MV Santa Maria, chartered by Geest, has generated more than 90,000 measurements of CO2 in the past few years.

The results show that the uptake by the North Atlantic halved between the mid-90s, when data was first gathered, and 2002-05.

“Such large changes are a tremendous surprise. We expected that the uptake would change only slowly because of the ocean’s great mass,” said Dr Schuster.

“We are cautious about attributing this exclusively to human-caused climate change because this uptake has never been measured before, so we have no baseline to compare our results to. Perhaps the ocean uptake is subject to natural ups and downs and it will recover again.”

But the direction of the change was worrying, she added, and there were some grounds for believing that a ‘saturation’ of the ocean sink would start to occur.

“The speed and size of the change show that we cannot take for granted the ocean sink for the carbon dioxide. Perhaps this is partly a natural oscillation or perhaps it is a response to the recent rapid climate warming. In either case we now know that the sink can change quickly and we need to continue to monitor the ocean uptake,” said Prof Watson.

Annie Ogden | alfa
Further information:
http://www.agu.org/journals/jc

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>