Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find how amber becomes death trap for watery creatures

Shiny amber jewelry and a mucky Florida swamp have given scientists a window into an ancient ecosystem that could be anywhere from 15 million to 130 million years old.

Scientists at the University of Florida and the Museum of Natural History in Berlin made the landmark discovery that prehistoric aquatic critters such as beetles and small crustaceans unwittingly swim into resin flowing down into the water from pine-like trees. Their findings are published this week in the Proceedings of the National Academy of Sciences.

The resin with its entombed inhabitants settled to the bottom of the swamp was covered by sediment and after millions of years became amber, a bejeweled version of the tar pits that trapped saber-toothed tigers in what is now California, said David Dilcher, a UF paleo-botanist and one of the study’s researchers.

“People never understood how freshwater algae and freshwater protozoans could be incorporated in amber because amber is considered to have been formed on land,” said Dilcher, who works at the Florida Museum of Natural History on the UF campus. “We showed that it just as well could be formed from resin exuded in watery swamp environments. Later the swamps may dry up and the resin hardens.”

Dilcher and Alexander Schmidt, a researcher at the Museum of Natural History in Berlin, replicated the prehistoric demise of the water bugs by taking a handsaw to a swamp on Dilcher’s property near Gainesville in north Central Florida. After they cut bark from some pine trees, the resin flowed into the water and they collected the goo and took it back to Dilcher’s lab on campus.

Stuck in the sticky sap were representatives of almost all the small inhabitants of the swamp ecosystem, Dilcher said. “We found beautiful examples of water beetles, mites, small crustaceans called ostracods, nematodes, and even fungi and bacteria living in the water,” he said.

The discovery not only solved the mystery of how swimming bugs could have been entombed in sticky sap from high up in a tree but could lead to new information about prehistoric, maybe even Jurassic, swamps, Dilcher said. Studying organisms that were trapped for millions of years in amber may help scientists to recreate prehistoric water ecosystems and learn how these life forms changed over time, he said.

While no one is claiming that the entombed bugs will be brought back to life through genetic splicing, the discovery may give clues about the evolution of microorganisms, he said.

“We all think of horses, elephants and people as having changed a great deal through time,” he said. “Have amoeba and other microscopic organisms changed much? Or have they found a niche or what we call a stasis in which their evolutionary lineage persists for many hundreds of millions of years? We don’t have the answers to those questions until we look at the fossil record.”

Insects such as bees, spiders, tics and fleas that become embedded in amber have received a great deal of attention because they are so abundant, Dilcher said. “Unfortunately, people have overlooked the little things while searching for the big bugs and the flowers in amber,” he said.

Microorganisms are important because they form relationships with higher organisms, making them the foundation of the pyramid of life, Dilcher said. “To understand more about their evolution adds an important step in our understanding of life itself,” he said.

Gene Kritsky, editor of the journal American Entomologist and a biology professor at the College of Mount St. Joseph in Cincinnati, said Dilcher has performed a great service in answering a question that has long puzzled scientists, the seemingly contradictory aspect of finding aquatic insects in tree resin.

“It’s been one of the strange things mentioned by biologists and entomologists for decades – how do you account for aquatic insects and organisms in what seemed to be an ancient terrestrial environment,” Kritsky said. “Dilcher examined this contradiction by creating the conditions that would cause sap deposits to flow into water to see what would happen. The results demonstrated that aquatic insects can be trapped in resin without leaving their aquatic world. Thus, the presence of aquatic organisms in amber is the result of a simple natural process.”

David Dilcher | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>