Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hungry microbes share out the carbon in the roots of plants

19.10.2007
Sugars made by plants are rapidly used by microbes living in their roots, according to new research at the University of York, creating a short cut in the carbon cycle that is vital to life on earth.

The green leaves of plants use the energy of sunlight to make sugar by combining water with carbon dioxide from the atmosphere. This sugar fuels the plant’s growth, but scientists in the University’s Department of Biology discovered that some of it goes straight to the roots to feed a surprising variety of microbes.

A study led by Professor Peter Young, of the Department of Biology at York and Dr Philippe Vandenkoornhuyse of the University of Rennes in France is published in the latest issue of the Proceedings of the National Academy of Sciences of the USA (PNAS).

In the carbon cycle, plants remove carbon dioxide (a greenhouse gas) from the atmosphere. Eventually, the carbon compounds that plants make are “eaten” by microbes and animals, which release carbon dioxide back into the atmosphere. The rapid cycling demonstrated by the new research is an important link in this process.

Professor Young said: “Our research identifies microbes in roots that create a short cut in the carbon cycle. This is an important development given current interest in reducing outputs of carbon dioxide and the ‘carbon trading’ that is intended to help this.”

The researchers traced the path of the carbon by replacing the normal carbon dioxide in the air around the plants with a version made with C-13, a natural, non-radioactive form of carbon that is slightly heavier than the usual kind. Within hours, microbes in the roots were feeding on sugars laden with C-13 and using it to build their own cells.

The newly-made molecules of DNA and RNA produced by the microbes could be separated from pre-existing ones because the C13 made them heavier. DNA and RNA are large molecules that carry genetic information about the organisms that made them, so it was possible to identify the microbes that made those heavy molecules. These were the “greedy” ones that were consuming the largest share of the sugars provided by the plant.

Professor Young said: “There are rich communities of microbes growing in or around the roots of all plants growing in normal soil. Most do no harm to the plant, and some are very beneficial to it. We looked at two sorts of microbe: bacteria and mycorrhizal fungi.”

The researchers found a high diversity of both types of microbe inside the roots of grass or clover plants growing in a pasture, but the “heavy” label revealed that some of these were growing much more actively than others.

Professor Young added: “It is these active organisms that are important because they are turning sugar back into carbon dioxide, which is released into the atmosphere. We were astonished at the wide variety of active bacteria that we discovered. Many of them had not been seen in plant roots before, and we have no idea how they may affect plant growth.”

The role of mycorrhizal fungi is better known. They are particularly important in carbon cycling, because they pump the carbon compounds out of the root into a massive network of fine fungal filaments in the soil, where it becomes available to other microbes and also to larger soil organisms like worms, mites and insects. In return, the fungus gathers phosphorus from the soil and delivers it to the plant, helping the plant to grow better. The research confirmed that there were many different fungi in the roots of each plant, but revealed, for the first time, which of these fungi were most active.

David Garner | alfa
Further information:
http://www.york.ac.uk/admin/presspr/pressreleases/hungrymicrobes.htm

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>