Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid oceans warning

18.10.2007
The world’s oceans are becoming more acid, with potentially devastating consequences for corals and the marine organisms that build reefs and provide much of the Earth’s breathable oxygen.

The acidity is caused by the gradual buildup of carbon dioxide (CO2) in the atmosphere, dissolving into the oceans. Scientists fear it could be lethal for animals with chalky skeletons which make up more than a third of the planet’s marine life.

Acid oceans will be among the issues explored by Australia’s leading coral scientists at a national public forum at the Shine Dome in Canberra tomorrow. The Coral Reef Futures 07 Forum is on October 18-19, 2007 and is hosted by the ARC Centre of Excellence for Coral Reef Studies (CoECRS).

“Recent research into corals using boron isotopes indicates the ocean has become about one third of a pH unit more acid over the past fifty years. This is still early days for the research, and the trend is not uniform, but it certainly looks as if marine acidity is building up,” says Professor Malcolm McCulloch of CoECRS and the Australian National University.

“It appears this acidification is now taking place over decades, rather than centuries as originally predicted. It is happening even faster in the cooler waters of the Southern Ocean than in the tropics. It is starting to look like a very serious issue.”

Corals and plankton with chalky skeletons are at the base of the marine food web. They rely on sea water saturated with calcium carbonate to form their skeletons. However, as acidity intensifies, the saturation declines, making it harder for the animals to form their skeletal structures (calcify).

“Analysis of coral cores shows a steady drop in calcification over the last 20 years,” says Professor Ove Hoegh-Guldberg of CoECRS and the University of Queensland. “There’s not much debate about how it happens: put more CO2 into the air above and it dissolves into the oceans.

“When CO2 levels in the atmosphere reach about 500 parts per million, you put calcification out of business in the oceans.” (Atmospheric CO2 levels are presently 385 ppm, up from 305 in 1960.)

“It isn’t just the coral reefs which are affected – a large part of the plankton in the Southern Ocean, the coccolithophorids, are also affected. These drive ocean productivity and are the base of the food web which supports krill, whales, tuna and our fisheries. They also play a vital role in removing carbon dioxide from the atmosphere, which could break down.”

Professor Hoegh-Guldberg said an experiment at Heron Island, in which CO2 levels were increased in the air of tanks containing corals, had showed it caused some corals to cease forming skeletons. More alarmingly, red calcareous algae – the ‘glue’ that holds the edges of coral reefs together in turbulent water – actually began to dissolve. “The risk is that this may begin to erode the Barrier of the Great Barrier Reef at a grand scale,” he says.

“As an issue it’s a bit of a sleeper. Global warming is incredibly serious, but ocean acidification could be even more so.”

Other issues at the forum include:

the latest science on coral bleaching
the rising plague of coral disease
managing Australia’s coral reefs under climate change
managing resilience in coral reefs
protecting sea water quality from activities on land
are ‘green zones’ helping to replenish fish stocks on the GBR?
the plight of reef sharks and other top predators.
The forum will feature a public discussion hosted by ABC Science Show host Dr Robyn Williams on the future of Australia’s coral reefs, at 6 PM on Thursday, October 18, at the Shine Dome, Canberra.

Australia’s coral reefs, particularly the Great Barrier Reef, Ningaloo Reef, and Lord Howe Island

World Heritage Area are national icons, of great economic, social, and aesthetic value. Tourism on the Great Barrier Reef alone contributes approximately $5 billion annually to the nation’s economy. Income from recreational and commercial fishing on Australia’s tropical reefs contributes a further $400 million annually. Consequently, science-based management of coral reefs is a national priority.

Globally, the welfare of 500 million people is closely linked to the goods and services provided by coral reef biodiversity. Uniquely among tropical and sub-tropical nations, Australia has extensive coral reefs, a small population of relatively wealthy and well-educated citizens, and well developed infrastructure. Coral reef research is one area where Australia has the capability, indeed the obligation, to claim world-leadership.

MEDIA AND THE PUBLIC ARE WELCOME TO ATTEND THE CORAL REEF FUTURES 2007 FORUM AND THE FREE PUBLIC DISCUSSION AT 6PM, THE SHINE DOME.

More information:
Professor Malcolm McCulloch, CoECRS and ANU, ph 02 6125 9969
Professor Ove Hoegh-Guldberg, CoECRS and UQ ph 07 3365 1156 or 0401 106 604
Louise Taylor, ARC Centre of Excellence for Coral Reef Studies
Ph: 07 4781 4000
Fax: 07 4781 6722
Email: Louise.Taylor@jcu.edu.au

Malcolm McCulloch | EurekAlert!
Further information:
http://www.jcu.edu.au
http://www.coralcoe.org.au/news_stories/07/forum_program.html

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>