Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upper Midwest forests are losing diversity, complexity

18.10.2007
Forests in the nation's Upper Midwest have changed greatly since the time of the early settlers. And more changes may be coming.

That's according to research done by Lisa A. Schulte, assistant professor in Iowa State University's department of Natural Resource Ecology and Management and her team of researchers.

"There's been a shift in the entire ecosystem," said Schulte, whose research has recently been published in the journal Landscape Ecology.

For the study, Schulte, along with Laura Merrick of Iowa State; David Mladenoff of the University of Wisconsin, Madison; and Thomas Crow and David Cleland of the U.S. Forest Service, took forest composition information as described in the Public Land Survey from the mid-1800s and compared it with today's forests.

She found that none of the areas surveyed - from Minnesota to Wisconsin to Michigan - have the same tree species makeup as they did 200 years ago.

"This system was made up of largely conifers with some deciduous trees, and now we have the opposite," she said.

Conifers -- mostly pines and other evergreens -- have gotten more scarce while deciduous trees such as aspen, birch and maple have taken their place. Trees in today's forests also tend to be smaller.

"Our analysis shows a distinct and rapid trajectory of vegetation change toward historically unprecedented and simplified conditions," Schulte's published paper says.

"In addition to overall loss of forestland, current forests are marked by lower species diversity, functional diversity and structural complexity compared with pre-Euro-American forests."

The changes have come from several stresses on the ecosystem including pests, diseases, timber harvest and high populations of white-tailed deer, which feed on young trees, according to Schulte.

The effect of humans may be the most important factor in the shift.

"Human land use of forested regions has intensified worldwide in recent decades, threatening long-term sustainability," the report says.

"Primary effects include conversion of land cover or reversion to an earlier stage of successional development. Both types of change can have cascading effects through ecosystems; however, the long-term effects where forests are allowed to regrow are poorly understood."

What is understood, says Schulte, are the stresses the forest changes are having on wildlife, including birds. Schulte has looked at several species of warblers that have historically inhabited the area. According to her findings, the outlook for them doesn't look good.

"These birds don't have much habitat at present, compared to historical times," she said.

They are also an important and beautiful element of biodiversity, she said. They perform an important function in these forests by eating insects that can become forest pests.

Among natural resource professionals, the forests in the Upper Midwest had been suspected to be changing for some time, according to Schulte, but now there is evidence to support the theories.

"We knew that these kinds of changes had happened," she said. "But this is the first paper to really quantitatively look at it across the entire region. So, anytime you can quantitatively show something, it has a lot more power than simple conjecture."

Lisa Schulte | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>