Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upper Midwest forests are losing diversity, complexity

18.10.2007
Forests in the nation's Upper Midwest have changed greatly since the time of the early settlers. And more changes may be coming.

That's according to research done by Lisa A. Schulte, assistant professor in Iowa State University's department of Natural Resource Ecology and Management and her team of researchers.

"There's been a shift in the entire ecosystem," said Schulte, whose research has recently been published in the journal Landscape Ecology.

For the study, Schulte, along with Laura Merrick of Iowa State; David Mladenoff of the University of Wisconsin, Madison; and Thomas Crow and David Cleland of the U.S. Forest Service, took forest composition information as described in the Public Land Survey from the mid-1800s and compared it with today's forests.

She found that none of the areas surveyed - from Minnesota to Wisconsin to Michigan - have the same tree species makeup as they did 200 years ago.

"This system was made up of largely conifers with some deciduous trees, and now we have the opposite," she said.

Conifers -- mostly pines and other evergreens -- have gotten more scarce while deciduous trees such as aspen, birch and maple have taken their place. Trees in today's forests also tend to be smaller.

"Our analysis shows a distinct and rapid trajectory of vegetation change toward historically unprecedented and simplified conditions," Schulte's published paper says.

"In addition to overall loss of forestland, current forests are marked by lower species diversity, functional diversity and structural complexity compared with pre-Euro-American forests."

The changes have come from several stresses on the ecosystem including pests, diseases, timber harvest and high populations of white-tailed deer, which feed on young trees, according to Schulte.

The effect of humans may be the most important factor in the shift.

"Human land use of forested regions has intensified worldwide in recent decades, threatening long-term sustainability," the report says.

"Primary effects include conversion of land cover or reversion to an earlier stage of successional development. Both types of change can have cascading effects through ecosystems; however, the long-term effects where forests are allowed to regrow are poorly understood."

What is understood, says Schulte, are the stresses the forest changes are having on wildlife, including birds. Schulte has looked at several species of warblers that have historically inhabited the area. According to her findings, the outlook for them doesn't look good.

"These birds don't have much habitat at present, compared to historical times," she said.

They are also an important and beautiful element of biodiversity, she said. They perform an important function in these forests by eating insects that can become forest pests.

Among natural resource professionals, the forests in the Upper Midwest had been suspected to be changing for some time, according to Schulte, but now there is evidence to support the theories.

"We knew that these kinds of changes had happened," she said. "But this is the first paper to really quantitatively look at it across the entire region. So, anytime you can quantitatively show something, it has a lot more power than simple conjecture."

Lisa Schulte | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>