Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fantastic plastic could cut CO2 emissions and purify water

15.10.2007
A new membrane that mimics pores found in plants has applications in water, energy and climate change mitigation.

Announced today in the international journal Science, the new plastic membrane allows carbon dioxide and other small molecules to move through its hourglass-shaped pores while preventing the movement of larger molecules like methane. Separating carbon dioxide from methane is important in natural gas processing and gas recovery from landfill.

The new material was developed as part of an international collaboration involving researchers from Hanyang University in Korea, the University of Texas and CSIRO, through its Water for a Healthy Country Flagship.

“This plastic will help solve problems of small molecule separation, whether related to clean coal technology, separating greenhouse gases, increasing the energy efficiency of water purification, or producing and delivering energy from hydrogen,” Dr Anita Hill of CSIRO Materials Science and Engineering said.

“The ability of the new plastic to separate small molecules surpasses the limits of any conventional plastics.

“It can separate carbon dioxide from natural gas a few hundred times faster than current plastic membranes and its performance is four times better in terms of purity of the separated gas.”

The secret to the new plastic lies in the hourglass shape of its pores, which help to separate molecules faster and using less energy than other pore shapes. In plant cell membranes, hourglass-shaped pores known as aquaporins selectively conduct water molecules in and out of cells while preventing the passage of other molecules such as salt.

The research shows how the plastics can be systematically adjusted to block or pass different molecules depending on the specific application. For example, these membranes may provide a low energy method for the removal of salt from water, carbon dioxide from natural gas, or hydrogen from nitrogen.

Each of these small molecule separations has impact on Australia’s interrelated issues of water scarcity, clean energy, and climate change mitigation.

“The new plastic is durable and can withstand high temperature, which is needed for many carbon capture applications. Heat-stable plastics usually have very low gas transport rates, but this plastic surprised us by its heightened ability to transport gases,” Dr Hill said.

The research is a partnership between Hanyang University Korea, led by Professor Dr Young Moo Lee and, the University of Texas, led by Professor Benny Freeman, and CSIRO.

Dr Hill and her team analysed the material, which was initially engineered by Ho Bum Park at Hanyang University, to show how it worked.

“Because it is so much more efficient than conventional plastic membranes, this material has huge potential to reduce the environmental footprint of water recycling and desalination,” Director of the Water for a Healthy Country Flagship Dr Tom Hatton said.

“Our Flagship, with state governments, water utilities and university partners, is working overtime to improve the sustainability of our water resources. We know how to desalinate and we know how to recycle and the challenge is to do this more efficiently and reliably without adding to greenhouse gas emissions.

“This global partnership has the goal of generating scientific understanding that underpins the development and implementation of new membrane technologies for energy and the environment.

“It is also a demonstration of how collaboration across boundaries can produce transformational science with potential societal benefits."

Andrea Wild | EurekAlert!
Further information:
http://www.csiro.au

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>