Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fantastic plastic could cut CO2 emissions and purify water

15.10.2007
A new membrane that mimics pores found in plants has applications in water, energy and climate change mitigation.

Announced today in the international journal Science, the new plastic membrane allows carbon dioxide and other small molecules to move through its hourglass-shaped pores while preventing the movement of larger molecules like methane. Separating carbon dioxide from methane is important in natural gas processing and gas recovery from landfill.

The new material was developed as part of an international collaboration involving researchers from Hanyang University in Korea, the University of Texas and CSIRO, through its Water for a Healthy Country Flagship.

“This plastic will help solve problems of small molecule separation, whether related to clean coal technology, separating greenhouse gases, increasing the energy efficiency of water purification, or producing and delivering energy from hydrogen,” Dr Anita Hill of CSIRO Materials Science and Engineering said.

“The ability of the new plastic to separate small molecules surpasses the limits of any conventional plastics.

“It can separate carbon dioxide from natural gas a few hundred times faster than current plastic membranes and its performance is four times better in terms of purity of the separated gas.”

The secret to the new plastic lies in the hourglass shape of its pores, which help to separate molecules faster and using less energy than other pore shapes. In plant cell membranes, hourglass-shaped pores known as aquaporins selectively conduct water molecules in and out of cells while preventing the passage of other molecules such as salt.

The research shows how the plastics can be systematically adjusted to block or pass different molecules depending on the specific application. For example, these membranes may provide a low energy method for the removal of salt from water, carbon dioxide from natural gas, or hydrogen from nitrogen.

Each of these small molecule separations has impact on Australia’s interrelated issues of water scarcity, clean energy, and climate change mitigation.

“The new plastic is durable and can withstand high temperature, which is needed for many carbon capture applications. Heat-stable plastics usually have very low gas transport rates, but this plastic surprised us by its heightened ability to transport gases,” Dr Hill said.

The research is a partnership between Hanyang University Korea, led by Professor Dr Young Moo Lee and, the University of Texas, led by Professor Benny Freeman, and CSIRO.

Dr Hill and her team analysed the material, which was initially engineered by Ho Bum Park at Hanyang University, to show how it worked.

“Because it is so much more efficient than conventional plastic membranes, this material has huge potential to reduce the environmental footprint of water recycling and desalination,” Director of the Water for a Healthy Country Flagship Dr Tom Hatton said.

“Our Flagship, with state governments, water utilities and university partners, is working overtime to improve the sustainability of our water resources. We know how to desalinate and we know how to recycle and the challenge is to do this more efficiently and reliably without adding to greenhouse gas emissions.

“This global partnership has the goal of generating scientific understanding that underpins the development and implementation of new membrane technologies for energy and the environment.

“It is also a demonstration of how collaboration across boundaries can produce transformational science with potential societal benefits."

Andrea Wild | EurekAlert!
Further information:
http://www.csiro.au

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>