Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fantastic plastic could cut CO2 emissions and purify water

15.10.2007
A new membrane that mimics pores found in plants has applications in water, energy and climate change mitigation.

Announced today in the international journal Science, the new plastic membrane allows carbon dioxide and other small molecules to move through its hourglass-shaped pores while preventing the movement of larger molecules like methane. Separating carbon dioxide from methane is important in natural gas processing and gas recovery from landfill.

The new material was developed as part of an international collaboration involving researchers from Hanyang University in Korea, the University of Texas and CSIRO, through its Water for a Healthy Country Flagship.

“This plastic will help solve problems of small molecule separation, whether related to clean coal technology, separating greenhouse gases, increasing the energy efficiency of water purification, or producing and delivering energy from hydrogen,” Dr Anita Hill of CSIRO Materials Science and Engineering said.

“The ability of the new plastic to separate small molecules surpasses the limits of any conventional plastics.

“It can separate carbon dioxide from natural gas a few hundred times faster than current plastic membranes and its performance is four times better in terms of purity of the separated gas.”

The secret to the new plastic lies in the hourglass shape of its pores, which help to separate molecules faster and using less energy than other pore shapes. In plant cell membranes, hourglass-shaped pores known as aquaporins selectively conduct water molecules in and out of cells while preventing the passage of other molecules such as salt.

The research shows how the plastics can be systematically adjusted to block or pass different molecules depending on the specific application. For example, these membranes may provide a low energy method for the removal of salt from water, carbon dioxide from natural gas, or hydrogen from nitrogen.

Each of these small molecule separations has impact on Australia’s interrelated issues of water scarcity, clean energy, and climate change mitigation.

“The new plastic is durable and can withstand high temperature, which is needed for many carbon capture applications. Heat-stable plastics usually have very low gas transport rates, but this plastic surprised us by its heightened ability to transport gases,” Dr Hill said.

The research is a partnership between Hanyang University Korea, led by Professor Dr Young Moo Lee and, the University of Texas, led by Professor Benny Freeman, and CSIRO.

Dr Hill and her team analysed the material, which was initially engineered by Ho Bum Park at Hanyang University, to show how it worked.

“Because it is so much more efficient than conventional plastic membranes, this material has huge potential to reduce the environmental footprint of water recycling and desalination,” Director of the Water for a Healthy Country Flagship Dr Tom Hatton said.

“Our Flagship, with state governments, water utilities and university partners, is working overtime to improve the sustainability of our water resources. We know how to desalinate and we know how to recycle and the challenge is to do this more efficiently and reliably without adding to greenhouse gas emissions.

“This global partnership has the goal of generating scientific understanding that underpins the development and implementation of new membrane technologies for energy and the environment.

“It is also a demonstration of how collaboration across boundaries can produce transformational science with potential societal benefits."

Andrea Wild | EurekAlert!
Further information:
http://www.csiro.au

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>