Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How green does your garden grow?

11.04.2002


Scientists at the University of Plymouth have been developing methods to `close the loop` on waste and pollution, by finding waste products that can be used to improve soil / plant-growth conditions. At the Society for Experimental Biology conference in Swansea Dr Stuart Lane presented ways in which garden and industrial waste could be recycled to benefit the environment.



In collaboration with Ecological Sciences Limited, Dr Lane`s group investigated a horticultural growth substitute for peat, derived from garden waste products. Because the mining of peat bogs is both unsustainable and ecologically destructive, given that peat bogs take hundreds of years to form and provide a specialised habitat, horticulturalists are seeking to replace traditional methods based on peat with more environmentally friendly alternatives. The EcoSci research project headed by Stephen Bullock experimented with green waste derived compost (GWC) made up of garden waste (such as hedge trimmings and lawn clippings) collected from civic refuse sites. The waste was carefully composted and mixed with coir - coconut husks, another industrial waste product - and composted bark. The GWC was tested against a well-known peat-based commercial product for ten plant species and was found to out-perform the peat product in almost all the parameters tested. GWC is organically accredited and the company is now looking to develop an organic multi-purpose compost.

Dr Lane`s group also investigated a waste product of horticulture. Hydroponics - growing plants without soil - frequently uses rockwall, a loft insulation material that cannot be recycled. Dr Lane set up a hydroponics study where the rockwall was replaced with zeolite, a cystalline solid that acts like a molecular sieve and is used in industrial catalysts and in products such as washing powders. Zeolite effectively retains and exchanges ions, so can be used to `channel` nutrients to plant roots and retain toxic minerals. Dr Lane found that the zeolite provided a good growth medium, regulating minerals and aerating the roots properly, and could be re-used for a number of growth cycles. The group also investigated the safest way of disposing of the zeolite once its ion exchange capacity was spent, by mixing it into soil at concentrations where it would not interfere with the flow of beneficial minerals to plants or release high levels of harmful metals.

Jenny Gimpel | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>