Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofuels could increase global warming with laughing gas

24.09.2007
Growing and burning many biofuel crops may actually raise, rather than lower, greenhouse gas emissions. That’s the conclusion of a new study led by Nobel prize-winning chemist Paul Crutzen, best known for his work on the ozone layer.

He and his colleagues have calculated that growing some of the most commonly used biofuel crops releases around twice the amount of the potent greenhouse gas nitrous oxide (N2O, also known as ‘laughing gas’) than previously thought – wiping out any benefits from not using fossil fuels and, worse, probably contributing to global warming.

‘The significance of it is that the supposed benefits of biofuels are even more disputable than had been thought hitherto,’ Keith Smith, a co-author on the paper and atmospheric scientist from the University of Edinburgh, told Chemistry World magazine. ‘What we are saying is that [growing many biofuels] is probably of no benefit and in fact is actually making the climate issue worse.’

The work is currently subject to open review in the journal Atmospheric Chemistry and Physics, and Crutzen himself has declined to comment until that process is completed. But the paper suggests that microbes convert much more of the nitrogen in fertilizer to nitrous oxide than previously thought – 3 to 5 per cent, which is twice the widely accepted figure of 2 per cent used by the International Panel on Climate Change (IPCC) to calculate the impact of fertilizers on climate change.

For rapeseed biodiesel, which accounts for about 80 per cent of the biofuel production in Europe, the relative warming due to nitrous oxide emissions is estimated at 1 to 1.7 times larger than the relative cooling effect due to saved fossil CO2 emissions. For corn bioethanol, dominant in the US, the figure is 0.9 to 1.5. Only cane sugar bioethanol – with a relative warming of 0.5 to 0.9 – looks like a better alternative to conventional fuels.

In the wake of the findings comes a recent report prepared by the OECD for a recent Round Table on Sustainable Development, which questioned the benefits of first generation biofuels and concluded that governments should scrap mandatory targets. Richard Doornbosch, the report’s author, says both the report and Crutzen’s work highlights the importance of establishing correct full life-cycle assessments for biofuels. ‘Without them, government policies can't distinguish between one biofuel and another – risking making problems worse,’ he said.

Brian Emsley | alfa
Further information:
http://www.chemistryworld.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>