Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landfill mining

19.09.2007
Retrieving material for composting from open dumps across the developing world could reduce the environmental impact of growing mountains of waste, according to researchers in India, writing today in the Inderscience publication, International Journal of Environmental Technology and Management.

These days, we in the developing world are encouraged to compost our garden and kitchen waste at home or dispose of it in our "green" bin for kerbside collection and processing. However, not everyone has a compost bin and not all of us are willing or able to separate waste into compostable materials and non-compostables. In the developing world, the problems are very different. Open dumps are prevalent and have a poor environmental record, according environmental engineer Kurian Joseph and colleagues at Anna University, in Chennai, India.

His team has considered the possibility of landfill mining as a viable means of rehabilitating open dumps. An earlier analysis of decomposed waste from the Deonar dumpsite, in Mumbai, India, revealed that almost a third of the mass is organic matter, while moisture accounts for 14 percent of the sieved material and inert matter the same. Soft plastics, textiles, glass, ceramics, metals, rubber, leather, and other substance account for the remainder of the sieved mass.

"Landfill mining can recover recyclable materials, landfill space and compost," explains Joseph. He suggests that mining of compost from open stabilised dumpsites and the application of the bioreactor landfill concept across the developing world could make dumps much more sustainable and reduce their environmental impact. The current study as part of the “Asian Regional Research Programme on Sustainable Landfill Management in Asia” funded by the Swedish International Development cooperation Agency (Sida) indicates that up to half of material dumped at such sites could be recovered and re-used as compost for non-edible plants or as daily cover material for landfills.

Over the last two decades, experimental testing and field pilot studies have been conducted to develop and improve landfill techniques and designs with the aim of reducing their negative impact on the environment. The researchers suggest that by encouraging microbial degradation of solid waste in landfill bioreactors it should be possible to improve the overall efficiency of the landfill mining process. This, they explain, needs to be demonstrated at the pilot scale to complement the ongoing research in this area.

"Landfill may no longer be viewed as a final disposal system," adds Joseph, "rather it should be viewed as a method for large-scale processing of waste that combines recovery and recycling processes."

Jim Corlett | alfa
Further information:
http://www.inderscience.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>