Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landfill mining

19.09.2007
Retrieving material for composting from open dumps across the developing world could reduce the environmental impact of growing mountains of waste, according to researchers in India, writing today in the Inderscience publication, International Journal of Environmental Technology and Management.

These days, we in the developing world are encouraged to compost our garden and kitchen waste at home or dispose of it in our "green" bin for kerbside collection and processing. However, not everyone has a compost bin and not all of us are willing or able to separate waste into compostable materials and non-compostables. In the developing world, the problems are very different. Open dumps are prevalent and have a poor environmental record, according environmental engineer Kurian Joseph and colleagues at Anna University, in Chennai, India.

His team has considered the possibility of landfill mining as a viable means of rehabilitating open dumps. An earlier analysis of decomposed waste from the Deonar dumpsite, in Mumbai, India, revealed that almost a third of the mass is organic matter, while moisture accounts for 14 percent of the sieved material and inert matter the same. Soft plastics, textiles, glass, ceramics, metals, rubber, leather, and other substance account for the remainder of the sieved mass.

"Landfill mining can recover recyclable materials, landfill space and compost," explains Joseph. He suggests that mining of compost from open stabilised dumpsites and the application of the bioreactor landfill concept across the developing world could make dumps much more sustainable and reduce their environmental impact. The current study as part of the “Asian Regional Research Programme on Sustainable Landfill Management in Asia” funded by the Swedish International Development cooperation Agency (Sida) indicates that up to half of material dumped at such sites could be recovered and re-used as compost for non-edible plants or as daily cover material for landfills.

Over the last two decades, experimental testing and field pilot studies have been conducted to develop and improve landfill techniques and designs with the aim of reducing their negative impact on the environment. The researchers suggest that by encouraging microbial degradation of solid waste in landfill bioreactors it should be possible to improve the overall efficiency of the landfill mining process. This, they explain, needs to be demonstrated at the pilot scale to complement the ongoing research in this area.

"Landfill may no longer be viewed as a final disposal system," adds Joseph, "rather it should be viewed as a method for large-scale processing of waste that combines recovery and recycling processes."

Jim Corlett | alfa
Further information:
http://www.inderscience.com

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>