Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Landfill mining

Retrieving material for composting from open dumps across the developing world could reduce the environmental impact of growing mountains of waste, according to researchers in India, writing today in the Inderscience publication, International Journal of Environmental Technology and Management.

These days, we in the developing world are encouraged to compost our garden and kitchen waste at home or dispose of it in our "green" bin for kerbside collection and processing. However, not everyone has a compost bin and not all of us are willing or able to separate waste into compostable materials and non-compostables. In the developing world, the problems are very different. Open dumps are prevalent and have a poor environmental record, according environmental engineer Kurian Joseph and colleagues at Anna University, in Chennai, India.

His team has considered the possibility of landfill mining as a viable means of rehabilitating open dumps. An earlier analysis of decomposed waste from the Deonar dumpsite, in Mumbai, India, revealed that almost a third of the mass is organic matter, while moisture accounts for 14 percent of the sieved material and inert matter the same. Soft plastics, textiles, glass, ceramics, metals, rubber, leather, and other substance account for the remainder of the sieved mass.

"Landfill mining can recover recyclable materials, landfill space and compost," explains Joseph. He suggests that mining of compost from open stabilised dumpsites and the application of the bioreactor landfill concept across the developing world could make dumps much more sustainable and reduce their environmental impact. The current study as part of the “Asian Regional Research Programme on Sustainable Landfill Management in Asia” funded by the Swedish International Development cooperation Agency (Sida) indicates that up to half of material dumped at such sites could be recovered and re-used as compost for non-edible plants or as daily cover material for landfills.

Over the last two decades, experimental testing and field pilot studies have been conducted to develop and improve landfill techniques and designs with the aim of reducing their negative impact on the environment. The researchers suggest that by encouraging microbial degradation of solid waste in landfill bioreactors it should be possible to improve the overall efficiency of the landfill mining process. This, they explain, needs to be demonstrated at the pilot scale to complement the ongoing research in this area.

"Landfill may no longer be viewed as a final disposal system," adds Joseph, "rather it should be viewed as a method for large-scale processing of waste that combines recovery and recycling processes."

Jim Corlett | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>