Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lopsided feet signal birds’ demise

10.04.2002


Mismatched feet may be a sign of population stress.
© Lens et al.


Asymmetric bodies fuel arguments over ecological risk.

Birds with one foot bigger than the other are showing signs of stress, say Belgian ecologists. The study backs the controversial idea that measuring body asymmetries could signal that a species is at risk.

Researchers at the University of Antwerp measured the feet of taita thrushes from three remaining pockets of their native forest in Kenya. Those from the most disturbed area showed eight times more difference between the size of their left and right feet than the least disturbed - a sign of future decline, they say1.



Yet the discrepancies barely warrant a waddle: "Most of the time, differences between left and right are less than 1% of the trait size itself," says Luc Lens, who led the study. Such small differences fuel an ongoing controversy about the use of asymmetry measures to identify stressed animal populations.

In general, the studies that find a correlation are the ones that get published; those that don’t, rarely make it into print. This issue has given ’fluctuating asymmetry’ a chequered history, with as many sceptics as believers.

Finding the mechanism underlying the disparity will be key to settling the debate. "We’re not at the stage that we understand enough about it and why in some cases it works and others it doesn’t," says conservation biologist Andrew Balmford at the University of Cambridge, UK.

Unbalanced birds

Lens argues that the foot measure in thrushes reveals an indirect link between asymmetry and survival. It is an indicator of a male’s overall quality, he suggests - important to females, who choose the most symmetrical mates. Thus increased asymmetry may imply that a male is less fit. "People wrongly assume that because the differences are so small, the impact or biological relevance is also small," says Lens.

Many who have studied fluctuating asymmetry will not be convinced of its general utility until it can be proven under controlled situations. "When people have examined fluctuating asymmetry and stress in experimental lab conditions, the basic incontrovertible finding is that there is no consistent linkage," argues Andrew Pomiankowski, a geneticist at University College London.

Lens and his colleagues acknowledge that previous work has suffered from confounding measurement errors. But they claim to have developed new statistical methods that accurately separate variation caused by asymmetry from measurement error.

Pomiankowski agrees that for this particular trait in this species, Lens and his group may have found a real difference, but that it can’t be assumed to work elsewhere. It will have to be determined on a case by case study, says Pomiankowski - there is no universal trait that will indicate an individual’s fitness.

Asymmetry measures might be most useful if they could pick up insidious, hard-to-detect threats, suggests Balmford, such as the spread of disease, rather than stresses resulting from habitat decline. There are about 1,350 thrushes in the region studied by Lens, but the most degraded area has a declining population and the fewest individuals.

References

  1. Lens, L., Van Dongen, S. & Matthysen, E. Fluctuation asymmetry as an early warning system in the critically endangered taita trush. Conservation Biology, 16, 479 - 487, (2002).


VIRGINIA GEWIN | © Nature News Service

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>