Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lopsided feet signal birds’ demise

10.04.2002


Mismatched feet may be a sign of population stress.
© Lens et al.


Asymmetric bodies fuel arguments over ecological risk.

Birds with one foot bigger than the other are showing signs of stress, say Belgian ecologists. The study backs the controversial idea that measuring body asymmetries could signal that a species is at risk.

Researchers at the University of Antwerp measured the feet of taita thrushes from three remaining pockets of their native forest in Kenya. Those from the most disturbed area showed eight times more difference between the size of their left and right feet than the least disturbed - a sign of future decline, they say1.



Yet the discrepancies barely warrant a waddle: "Most of the time, differences between left and right are less than 1% of the trait size itself," says Luc Lens, who led the study. Such small differences fuel an ongoing controversy about the use of asymmetry measures to identify stressed animal populations.

In general, the studies that find a correlation are the ones that get published; those that don’t, rarely make it into print. This issue has given ’fluctuating asymmetry’ a chequered history, with as many sceptics as believers.

Finding the mechanism underlying the disparity will be key to settling the debate. "We’re not at the stage that we understand enough about it and why in some cases it works and others it doesn’t," says conservation biologist Andrew Balmford at the University of Cambridge, UK.

Unbalanced birds

Lens argues that the foot measure in thrushes reveals an indirect link between asymmetry and survival. It is an indicator of a male’s overall quality, he suggests - important to females, who choose the most symmetrical mates. Thus increased asymmetry may imply that a male is less fit. "People wrongly assume that because the differences are so small, the impact or biological relevance is also small," says Lens.

Many who have studied fluctuating asymmetry will not be convinced of its general utility until it can be proven under controlled situations. "When people have examined fluctuating asymmetry and stress in experimental lab conditions, the basic incontrovertible finding is that there is no consistent linkage," argues Andrew Pomiankowski, a geneticist at University College London.

Lens and his colleagues acknowledge that previous work has suffered from confounding measurement errors. But they claim to have developed new statistical methods that accurately separate variation caused by asymmetry from measurement error.

Pomiankowski agrees that for this particular trait in this species, Lens and his group may have found a real difference, but that it can’t be assumed to work elsewhere. It will have to be determined on a case by case study, says Pomiankowski - there is no universal trait that will indicate an individual’s fitness.

Asymmetry measures might be most useful if they could pick up insidious, hard-to-detect threats, suggests Balmford, such as the spread of disease, rather than stresses resulting from habitat decline. There are about 1,350 thrushes in the region studied by Lens, but the most degraded area has a declining population and the fewest individuals.

References

  1. Lens, L., Van Dongen, S. & Matthysen, E. Fluctuation asymmetry as an early warning system in the critically endangered taita trush. Conservation Biology, 16, 479 - 487, (2002).


VIRGINIA GEWIN | © Nature News Service

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>