Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Virtual globes visualise the Earth's environment

An environmental scientist has won an award for showing how virtual globes, such as Google Earth, can be used to visualise complex scientific data and reveal new insights into environmental processes.

Dr Jon Blower from the University of Reading and colleagues were awarded `Best Paper' at the UK e-Science All Hands Meeting in Nottingham this week for their paper describing how such virtual globes can aid scientific research and communicate results to a wide public. "This is more than just eye candy," said Dr Blower. "Visualisation is extremely important for revealing new information about environmental processes from the local level right up to the global scale."

Google Earth is a computer-based 3D representation of the Earth on which you can superimpose your own information. Based on satellite imagery, it can also show you, rather alarmingly, an image of your house from space. The Reading scientists have used it, however, to visualise two or more scientific datasets simultaneously.

Figure 1 shows how the passage of Hurricane Katrina affected sea surface temperature in the Gulf of Mexico. One dataset shows sea surface temperature, with red colours being warmer. The other tracks the passage and intensity of the hurricane, with red dots representing greater intensity. "The image shows that the hurricane caused the sea on the right-hand side of the storm to cool, which is where the strong winds would have caused upwelling of colder subsurface water," says Dr Blower. "You can also see the hurricane grow in strength as it picks up energy from the warm ocean." A video revealed precisely how the storm and the sea affect each other.

Google Earth is also helping environmental scientists to test their models against real data. Figure 2 shows at a glance whether a model of the ocean is good at predicting what is actually observed. Green dots indicate that the model's predictions of temperature and salinity accord well with measurements recorded by ships and buoys. The red pins, which are mainly located in the turbulent Gulf Stream, are not such a good match. "A virtual globe allows the scientist to view the data at a huge range of scales. Sometimes a global overview is appropriate and sometimes the scientist needs to zoom in to a region where observations are very closely spaced," says Dr Blower.

In another application, scientists from the British Antarctic Survey are displaying real-time data in Google Earth to help them direct scientific missions. The movement of penguins recorded by scientists in the field, for example, is being combined with satellite images of nutrient concentrations to plot where the penguins, and hence the scientists, should be heading next, helping to make the most efficient use of time and resources on scientific cruises.

"These virtual globes are particularly useful for bringing data together visually to explore ideas before embarking on a detailed study. For example a scientist could quickly bring together data feeds to investigate the effects of weather on outbreaks of disease. There are thousands of examples of how virtual globes can help us to generate and explore new ideas about how the world works", said Dr Blower. Future work could extend the capabilities of virtual globes, enabling them to visualise undersea and underground data.

Professor Jie Xu of Leeds University who chaired the AHM programme committee said: "This is an excellent survey on the hot topic of using virtual globes to visualise and share important environmental data, supported by interesting and realistic application examples."

Julia Short | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>