Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emissions targets for 2030 will only be reached by banning cars in both inner and outer London

13.09.2007
Emissions targets for London stand little chance of being achieved unless the Greater London Authority (GLA) takes radical steps, one of which could be the removal of all cars from both inner and outer London, according to a report published today.

The GLA is committed to reducing London’s carbon dioxide emissions by 60% by 2025[1], but most climate scientists argue that even more rapid reductions will be needed if we are to avoid dangerous climate change[2]. A team of experts from the London School of Hygiene & Tropical Medicine (LSHTM) and the Transport Studies Unit (Oxford University Centre for the Environment) will today reveal that London is on course to reduce land transport emissions by only 10%-23%[3,4].

They do, however, offer a radical vision which could achieve a 72% drop in emissions by 2030 – a figure that is 83% lower than the current UK average. The solution involves combining a car-free London with high levels of active transport (for example walking and cycling) and realistic but challenging energy-efficient improvements.

Their findings will be released today at a press event taking place at LSHTM to launch the Lancet Series on Energy and Health, which looks at access to electricity and energy poverty, transport, agriculture, nuclear and renewable power, and a range of other energy issues, and the effect each has on health. The Series calls for action to be taken at personal, national and global level to address these issues.

Land transport emissions in London have remained stable since 1990 and are now responsible for about 14% of total emissions. Although cycling is gaining popularity, with an 83% increase in the capital since 2000, more than seven out of ten (72%) car journeys in London cover a distance shorter than 8 kilometres.

There is evidence of substantial negative health effects from motorised transport in London5. Replacing car trips with active transport such as walking or cycling would lower emissions and offer greater health gains than other options. In 2003, only 32% of men and 26% of women in London achieved minimum activity recommendations5.

Calculations show that a car-free inner London scenario equates to a 49% reduction in emissions7. Because most London car trips are within outer London, changes in inner London boroughs alone were not found to be sufficient to meet the GLA emissions target. The car-free inner and outer London model was found to bring about a 72% reduction in emissions, with active transport making up 53% of all trips. Given the lower starting point, this means 83% lower emissions than the UK average for 2000.

The authors highlight the many benefits, in terms of public health and safety, that the adoption of the car-free scenario would achieve. Not only would the former car users benefit in terms of improved health as a result of greater physical activity, but as active transport in the form of walking or cycling increased, more people would be willing and able to comfortably walk or cycle longer distances.

They also point to the strong link between pedestrian injury and deprivation, with rates in the most deprived London areas over twice those in the least deprived. In London, as in virtually all locations, walking is the main transport mode of the poor. With fewer cars, people would be exposed to less traffic danger. Although pedestrians and cyclists are exposed to greater risk than car drivers, previous studies have shown that as the number of pedestrians and cyclists increase, so the danger per km walked or cycled falls.

James Woodcock, who led a team of researchers at the London School of Hygiene & Tropical medicine, comments: ‘Only the car-free greater London scenario is close to achieving the emission reductions required by 2030. Even then we need to reduce carbon fuel use on our public transport. Car-free streets could transform the quality of our urban environment, while improving health. Although London has made small improvements, achieving a car-free city would require a dramatic move in favour of walking and cycling’.

A separate paper uses London travel data to identify four archetypal car using groups in London: Claire, a 10 year old girl; Lucy, a 40 year old mother; Tom, a 50 year old man living and working in outer London; and Derek, a 78 year old man. It calculates the increases in physical activity and energy expenditure that would result if they transferred their car journeys to walking, cycling and public transport, with occasional trips by taxi. By doing so, they would expend an average of 139,300 kJ of energy a year, equivalent to an average of 4.5 kg of fat. Lucy would reduce her risk of breast cancer by 25% and increase her life expectancy by between 1 and 2 years, while Tom would enjoy a 20-40% reduction in the risk of premature mortality and around a 30% reduction in risk of type 2 diabetes.

The findings will be launched at 10.30 am, Wednesday 12 September, at a press event in the Bennett Room at the London School of Hygiene & Tropical Medicine, Keppel Street, London WC1, as part of the launch of the Lancet Series on Energy and Health. If you would like to attend, or interview any of the authors, please contact the London School of Hygiene & Tropical Medicine Press Office on +44 (0) 20 7927 2802 or the Lancet Press Office on +44 (0) 20 7424 4949 or pressoffice@lancet.com

Notes
[1] Anon. Action today to protect tomorrow: the mayor’s climate change action plan. London: Greater London Authority, 2007.

[2] Meinhausen M. What does a 2oC target mean for greenhouse gas concentrations? A brief analysis based on multi-gas pathways and several climate change sensitivity uncertainty estimates. In: Schellnbuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G, eds. Avoiding dangerous climate change. Cambridge: Cambridge University Press.

[3] Watkiss P, Brand C, Hurley F, Mindell J, Pilkington A. Informing transport health impact assessment in London . London: NHS Executive, 2000.

[4] Action today to protect tomorrow.

[5] The BAU scenario resulted in a 10% lower emissions per head compared to 2000, a reduction which was largely due to the increases in use of public transport and cycling in London since 2000 (although, the authors note, this optimistic scenario would be less in evidence in other UK cities, where rates of cycling and public transport use are not as high).

[6] Anon. Health Survey for England 2003. Vol 2, chapter 5: Physical activity. pp 108–42.

[7] Using the 2001 London Area Transport Survey (LATS) of trips by Londoners, the authors estimated the effect of three transport scenarios on emissions in 2030. Scenario 1 represented business as usual (BAU). Scenario 2 envisaged a car-free inner London, with greater energy-efficiency and stable trip length. Based on data from 2000, it quantified the effect of transferring 90% of car journeys of less than 8km in inner London to active transport (cycling or walking) with the remainder transferred to taxis, and all car journeys over 8km transferred to public transport. Scenario 3 envisaged the transfer of journeys as in scenario 2 but for both inner and outer London, combined with greater reductions in fossil fuel use by public transport and improved local accessibility.

Lindsay Wright | alfa
Further information:
http://www.lshtm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>