Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid Rain Has a Disproportionate Impact on Coastal Waters

10.09.2007
The release of sulfur and nitrogen into the atmosphere by power plants and agricultural activities plays a minor role in making the ocean more acidic on a global scale, but the impact is greatly amplified in the shallower waters of the coastal ocean, according to new research by atmospheric and marine chemists.

Ocean “acidification” occurs when chemical compounds such as carbon dioxide, sulfur, or nitrogen mix with seawater, a process which lowers the pH and reduces the storage of carbon.

Ocean acidification hampers the ability of marine organisms—such as sea urchins, corals, and certain types of plankton—to harness calcium carbonate for making hard outer shells or “exoskeletons.” These organisms provide essential food and habitat to other species, so their demise could affect entire ocean ecosystems.

The findings were published this week in the online “early edition” of the Proceedings of the National Academy of Sciences; a printed version will be issued later this month.

“Acid rain isn’t just a problem of the land; it’s also affecting the ocean,” said Scott Doney, lead author of the study and a senior scientist in the Department of Marine Chemistry and Geochemistry at the Woods Hole Oceanographic Institution (WHOI). “That effect is most pronounced near the coasts, which are already some of the most heavily affected and vulnerable parts of the ocean due to pollution, over-fishing, and climate change.”

In addition to acidification, excess nitrogen inputs from the atmosphere promote increased growth of phytoplankton and other marine plants which, in turn, may cause more frequent harmful algal blooms and eutrophication (the creation of oxygen-depleted “dead zones”) in some parts of the ocean.

Doney collaborated on the project with Natalie Mahowald, Jean-Francois Lamarque, and Phil Rasch of the National Center for Atmospheric Research, Richard Feely of the Pacific Marine Environmental Laboratory, Fred Mackenzie of the University of Hawaii, and Ivan Lima of the WHOI Marine Chemistry and Geochemistry Department.

“Most studies have traditionally focused only on fossil fuel emissions and the role of carbon dioxide in ocean acidification, which is certainly the dominant issue,” Doney said. “But no one has really addressed the role of acid rain and nitrogen.”

The research team compiled and analyzed many publicly available data sets on fossil fuel emissions, agricultural, and other atmospheric emissions. They built theoretical and computational models of the ocean and atmosphere to simulate where the nitrogen and sulfur emissions were likely to have the most impact. They also compared their model results with field observations made by other scientists in the coastal waters around the United States.

Farming, livestock husbandry, and the combustion of fossil fuels cause excess sulfur dioxide, ammonia, and nitrogen oxides to be released to the atmosphere, where they are transformed into nitric acid and sulfuric acid. Though much of that acid is deposited on land (since it does not remain in the air for long), some of it can be carried in the air all the way to the coastal ocean.

When nitrogen and sulfur compounds from the atmosphere are mixed into coastal waters, the researchers found, the change in water chemistry was as much as 10 to 50 percent of the total changes caused by acidification from carbon dioxide.

This rain of chemicals changes the chemistry of seawater, with the increase in acidic compounds lowering the pH of the water while reducing the capacity of the upper ocean to store carbon.

The most heavily affected areas tend to be downwind of power plants (particularly coal-fired plants) and predominantly on the eastern edges of North America, Europe, and south and east of Asia.

Seawater is slightly basic (pH usually between 7.5 and 8.4), but the ocean surface is already 0.1 pH units lower than it was before the Industrial Revolution. Previous research by Doney and others has suggested that the ocean will become another 0.3 to 0.4 pH units lower by the end of the century, which translates to a 100 to 150 percent increase in acidity.

Funding for this research was provided by the National Science Foundation, the National Aeronautics and Space Administration, and the National Oceanic and Atmospheric Administration.

Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

WHOI Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>