Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tassie tiger no match for dingo

06.09.2007
The wily dingo out-competed the much larger marsupial thylacine by being better built anatomically to resist the “mechanical stresses” associated with killing large prey, say Australian scientists.

Despite being armed with a more powerful and efficient bite and having larger energy needs than the dingo, the thylacine was restricted to eating relatively small prey while the dingo's stronger head and neck anatomy allowed it to subdue large prey as well.

Earlier studies had given ambiguous results regarding the size of prey favoured by the thylacine, and had suggested that changes in mainland Aboriginal culture may have driven its extinction 3,000 years ago in mainland Australia.

This new conclusion, published today in Proceedings B of the Royal Society, is based on sophisticated computer simulations revealing bite forces and stress patterns applying to dingo and thylacine skull specimens.

A team led by UNSW palaeontologist Stephen Wroe, along with Karen Moreno (UNSW) and University of Newcastle colleagues, Colin McHenry and Philip Clausen, conducted the research.

The simulations illustrate mechanical stresses and strains applying to the skull, jaw, teeth and cranial muscles of both animals across a range of biting, tearing and shaking motions that simulate the impact of controlling and killing a struggling prey.

Engineers use the same methodology – known as finite element analysis – to predict distortion and “failure” in load-bearing materials, such as metal in the body and wings of an airplane.

The researchers applied this technique to test the hypothesis that the dingo would have substantially overlapped with the thylacine regarding its choice of favourite prey.

Their results demonstrated considerable similarity between the two species, but also informative differences.

“The thylacine has a greater bite force than the dingo but its skull becomes more stressed than the dingo under conditions that simulate the influence of struggling prey,” says Dr Wroe, who believes the bigger marsupial took downsized, relatively small prey despite its big energy requirements.

“If the thylacine had been better able to hunt large prey, such as adult kangaroos and emus, as well as smaller species, then it would have faced less competition from the smaller dingo,” says Dr Wroe.

As well, the dingo may have enjoyed a competitive edge by having a social structure that enabled it to hunt in packs, whereas the thylacine was a lone hunter.

The findings add to a complex picture of how and why the thylacine became extinct after millions of years of successful survival in Australia. Its extinction on the continent's mainland has also been linked to climate change and a shift in Aboriginal land-use patterns about the same time as the introduction of the dingo.

The unique carnivore then persisted only on the island of Tasmania – which was free of dingoes – until the arrival of European settlers, who persecuted it believing it to be a wolf-like creature that killed sheep.

Kept as pets, exported to zoos, killed by farmers and hunters, the pre-European thylacine population of around 5,000 was also pressured by government bounties: records reveal that 2,000 bounties were paid in the period the period 1888-1912.

Like the dingo, the settlers competed with the thylacine’s food base by hunting small animals and reducing their numbers through ecological and environmental impacts. The last known individual died in a Tasmanian zoo in 1936.

“As a large dedicated flesh eater reliant on relatively small prey, the thylacine may have been particularly vulnerable, not only to food competition with the dingo – but also to the destructive influence of the first Europeans in Australia", Dr Wroe says.

Dr. Stephen Wroe | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>