Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Environmentally friendly plastic film of potato starch


Plastic made of potato starch is a promising material for packaging, which is a big new application for starch plastics. This is shown in Åsa Rindlav-Westling’s doctoral dissertation, which was carried out in Paul Gatenholm’s research team in polymer technology at Chalmers University of Technology, Sweden.

Our huge quantities of refuse could be reduced and a greater proportion than today could be composted. Combustion of materials from oil, such as conventional plastics and fossil fuels, raise levels of carbon dioxide in the atmosphere, increasing the risk of the greenhouse effect and environmental problems. Starch polymers, extracted from potatoes, corn, and wheat, for instance, can be used as raw materials for biologically degradable plastics. Today the EU has a surplus of agricultural products, and a certain share could be used as raw materials in the production of plastics. At present disposable eating utensils and packaging chips are made from starch. A major new field of use for plastic films made of starch could be packaging. Starch films have excellent oxygen-barrier properties and in some cases can replace aluminium when it comes to protecting oxygen-sensitive foods.

Potato starch is produced from carbon dioxide and water with the help of energy from the sun when potatoes grow. Åsa Rindlav-Westling’s doctoral work deals with plastic films made from potato starch. Her work has involved studying starch-film structure, which affects its properties. By varying the conditions under which the film is produced, she has been able to control the structure. Slow formation of film results in starches that exhibit well-ordered films, and crystallinity is high. Film properties like strength and elasticity are affected by crystallinity.

The films exhibited excellent properties as oxygen barriers. In high humidity, however, both the barrier properties and the strength of the films deteriorated. This is due to softening caused by the penetration of moisture. A new theory is presented regarding how water is redistributed in the film after heating, thereby influencing properties. One way to prevent water from penetrating the film is to treat its surface, and experiments were made involving plasma treatment, in which a glass-like surface or a strongly water-repellent surface was formed. A further possibility is to add water-repellent substances to the film, which will deposit themselves on the surface. Proteins in the starch turned out to migrate to the surface, which thereby became more water-resistant.

The study shows that starch is an extremely promising material for use in biodegradable and renewable plastics. The knowledge yielded by this work will be of use the development of new and environmentally friendly plastics. The dissertation Crystallinity and Morphology of Starch Polymer of Films was publicly defended on March 15.

Jorun Fahle | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Generation of a Stable Biradical

22.03.2018 | Life Sciences

Scientists develop a room temperature maser to amplify weak signals

22.03.2018 | Life Sciences

Jacobs University supports new mapping of Mars, Mercury and the Moon

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>