Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmentally friendly plastic film of potato starch

08.04.2002


Plastic made of potato starch is a promising material for packaging, which is a big new application for starch plastics. This is shown in Åsa Rindlav-Westling’s doctoral dissertation, which was carried out in Paul Gatenholm’s research team in polymer technology at Chalmers University of Technology, Sweden.



Our huge quantities of refuse could be reduced and a greater proportion than today could be composted. Combustion of materials from oil, such as conventional plastics and fossil fuels, raise levels of carbon dioxide in the atmosphere, increasing the risk of the greenhouse effect and environmental problems. Starch polymers, extracted from potatoes, corn, and wheat, for instance, can be used as raw materials for biologically degradable plastics. Today the EU has a surplus of agricultural products, and a certain share could be used as raw materials in the production of plastics. At present disposable eating utensils and packaging chips are made from starch. A major new field of use for plastic films made of starch could be packaging. Starch films have excellent oxygen-barrier properties and in some cases can replace aluminium when it comes to protecting oxygen-sensitive foods.

Potato starch is produced from carbon dioxide and water with the help of energy from the sun when potatoes grow. Åsa Rindlav-Westling’s doctoral work deals with plastic films made from potato starch. Her work has involved studying starch-film structure, which affects its properties. By varying the conditions under which the film is produced, she has been able to control the structure. Slow formation of film results in starches that exhibit well-ordered films, and crystallinity is high. Film properties like strength and elasticity are affected by crystallinity.


The films exhibited excellent properties as oxygen barriers. In high humidity, however, both the barrier properties and the strength of the films deteriorated. This is due to softening caused by the penetration of moisture. A new theory is presented regarding how water is redistributed in the film after heating, thereby influencing properties. One way to prevent water from penetrating the film is to treat its surface, and experiments were made involving plasma treatment, in which a glass-like surface or a strongly water-repellent surface was formed. A further possibility is to add water-repellent substances to the film, which will deposit themselves on the surface. Proteins in the starch turned out to migrate to the surface, which thereby became more water-resistant.

The study shows that starch is an extremely promising material for use in biodegradable and renewable plastics. The knowledge yielded by this work will be of use the development of new and environmentally friendly plastics. The dissertation Crystallinity and Morphology of Starch Polymer of Films was publicly defended on March 15.

Jorun Fahle | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>