Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Failing protection of Africa's national parks

03.09.2007
For years, wildlife managers and biologists in Africa have known that large mammals were disappearing outside reserves. There are historical accounts describing impressive populations of large mammals resident or migrating through areas that are nowadays devoid of anything bigger than passerines and rodents and that are now perhaps a patchwork of small scale land holdings instead of natural vegetation.

These anecdotes have increasingly been supported by quantitative data showing that wildlife outside national parks and game reserves has declined precipitously over the last 15 years (e.g., Caro et al., 1998; Stoner et al., 2007a). But now a raft of studies are showing that we have moved beyond this to the next step: we are losing species from many of Africa’s national parks – IUCN’s top flight category of protection – and bastion of biodiversity conservation worldwide (Terborgh & Van Schaik, 2002).

Why is this news suddenly? There are two reasons – both methodological. First, long-term datasets are being mined using sophisticated statistical methods that control for a plethora of confounding variables. These include a 40-year time span of monthly transects conducted by park guards in six Ghanaian National Parks (Brashares, 2003), and decade long collections of aerial censuses flown over huge wildlife areas in Kenya and Tanzania (Ottichilo et al., 2000; Stoner et al., 2007b). Secondly, conservation biologists have become less shy of combining and juxtaposing different survey methods to trace a picture of population changes within a single reserve across considerable time frames (Ogutu & Owen-Smith, 2005; Scholte, Adam & Serge, 2007; Van Vliet et al., 2007). Such studies generally focus on antelopes that are relatively easy to count from the air, from a vehicle, on foot, or by means of droppings. Most are delicious to eat.

The causes of these declines are principally anthropogenic and ultimately the result of human population growth, coupled with demands for a higher standard of living. But the proximate factors seem to vary on a case by case basis. Many parks are subject to the ravaging impact of illegal hunters, often local, but sometimes attracted from far away. Examples include Katavi National Park in Tanzania (Stoner et al., 2007b), Ipassa Man and Biosphere Reserve in Gabon (Van Vliet et al., 2007), and Comoé National Park, Côte d’Ivoire (Fischer & Linsenmair, 2007). In West-Central Africa, this bushmeat hunting is often the most common factor pressing upon antelope populations (Fa et al., 2005). In the old days this was for local consumption, now it includes tables in far off cities that, incredibly, extend to London and Paris.

Then there are reserves in which human encroachment, triggered by a galloping local demography or immigration (Scholte, 2003), is the driving force, with livestock infringing reserve boundaries (e.g., Stephens et al., 2001) or people moving into the reserves to farm (e.g., Lejju, 2004). Currently, there is a high profile debate going on in Uganda between sugar growers who want to grow their product in Mabira Forest Reserve 50 kms from Kampala and local conservationists who want to protect endemic bird species there (http://www.voanews.com/english/2007-06-08-voa53.cfm); five people have died in demonstrations.

Finally, in reserves too small to harbour wildlife populations year-round, multiple factors, natural and anthropogenic, operate in concert to diminish antelope populations. For instance, the crash in herbivores ranging from buffalo Syncerus caffer to giraffe Giraffa camelopardalis to wildebeest Connochaetes taurinus in the Masai Mara National Reserve in Kenya results from a constellation of drought, poaching and increased wheat farm acreage in surrounding areas (Ottichilo et al., 2000).

There seem just a handful of exceptions to these anthropogenically driven declines. In the well-resourced Kruger National Park in South Africa downward trends of herbivore populations can be attributed unequivocally to nonhuman factors, namely dry season rainfall (Ogutu & Owen-Smith, 2005). And some species are even increasing, such as elephants Loxodonta africana faring relatively well inside and outside Eastern and Southern African reserves (Blanc et al., 2007). Arguably Africa’s premier flagship species, elephants receive public attention and attract resources for patrolling and management. But contrary to antelopes, elephants are targeted for bush meat only in Central Africa, while elsewhere the present ivory ban gives them some respite after decades of persecution.

We suspect that the documented herbivore population declines represent only the tip of the iceberg. Antelope populations have generally been poorly surveyed, and with the notable exceptions of the African Journal of Ecology articles quoted here, have failed to present quantitative information. More records must be tapped to quantify wildlife trends, especially in Western, Central and North-eastern Africa, but the new data confirm concerns raised by an earlier, qualitative, continent-wide antelope population assessment (East, 1999).

So what can we do to stop a pervasive diminution of antelope populations across the continent? There is no easy solution. Certainly, conservation biologists have identified a number of factors that promote bush meat consumption including opening up the forest to loggers (Robinson, Redford & Bennett, 1999); difficulties in obtaining other sources of animal protein (Brashares et al., 2004); and increasing standards of living driving demand for wild animals (East et al., 2005). But it is difficult, and in some cases immoral, to try to stop changes occurring at national and sometimes international scales. The old idea of setting aside large tracts of land in remote areas far from human populations is still a viable option in some parts of the continent (Mittermeier et al., 2003), one recently advocated for the extraordinary rediscovery of herbivore migrations in southern Sudan (http://www.wcs.org/353624/wcs_southernsudan). But it is a conservation approach increasingly outmoded by land-use change, demographics and policy reform. And, yes, beefed up infrastructure, increased patrols, vehicles, and incentives for park guards, in tandem with community outreach programs, will go some way to stop poaching; whereas internal and external opposition to land greedy development schemes may halt encroachment. What the new data show, however, is even relatively well-organized protected areas cannot be relied on as long-lasting conservation tools, at least for antelopes and their predators. In the final analysis, we may have to get used to faunal relaxation in Africa’s network of famous reserves (Soule, Wilcox & Holtby, 1979; Pullan, 1983) leaving a continent containing isolated pockets of large mammal diversity living at low population sizes. Just like Europe.

Davina Quarterman | EurekAlert!
Further information:
http://www.blackwellpublishing.com
http://www.blackwell-synergy.com/doi/full/10.1111/j.1365-2028.2007.00814.x?cookieSet=1

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>