Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites eye coastal water quality

31.08.2007
Using data from instruments aboard NASA satellites, Zhiqiang Chen and colleagues at the University of South Florida in St. Petersburg, found that they can monitor water quality almost daily, rather than monthly. Such information has direct application for resource managers devising restoration plans for coastal water ecosystems and federal and state regulators in charge of defining water quality standards.

The team’s findings, published July 30 in two papers in Remote Sensing of Environment, will help tease out factors that drive changes in coastal water quality. For example, sediments entering the water as a result of coastal development or pollution can cause changes in water turbidity – a measure of the amount of particles suspended in the water. Sediments suspended from the bottom by strong winds or tides may also cause such changes. Knowing where the sediments come from is critical to managers because turbidity cuts off light to the bottom, thwarting the natural growth of plants.

"If we can track the source of turbidity, we can better understand why turbidity is changing. And if the source is human-related, we can try to manage that human activity," says Frank Muller-Karger, a study co-author from the University of South Florida.

Satellites previously have observed turbidity in the open ocean by monitoring how much light is reflected and absorbed by the water. The technique has not had much success in observing turbidity along the coast, however. That’s because shallow coastal waters and Earth’s atmosphere serve up complicated optical properties that make it difficult for researchers to determine which colors in a satellite image are related to turbidity, which to shallow bottom waters, and which to the atmosphere. Now with advances in satellite sensors combined with developments in how the data are analyzed, Chen and colleagues show it is possible to monitor turbidity of coastal waters via satellite.

The traditional methods of monitoring coastal water quality require scientists to use boats to gather water samples, typically on a monthly basis because of the high costs of these surveys. The method is sufficient to capture episodic events affecting water quality, such as seasonal freshwater runoff. Chen and colleagues suspected, however, that the monthly measurements were not capturing fast changes in factors that affect water quality, such as winds, tides and human influences including pollution and runoff.

The team set out to see if satellites could accurately measure two key indicators of water quality - turbidity and water clarity – in Tampa Bay, Fla. An analysis of turbidity takes into account water clarity, a measure of how much light can penetrate into deep water. Satellites, with their wide coverage and multiple passes per week, provided a solution to frequent looks and measuring an entire estuary within seconds.

To determine water clarity in Tampa Bay, the team looked at more than eight years of imagery from GeoEYE's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument, whose data is analyzed, processed and distributed by NASA for research. The images give a measure of how much light is reflected by the water. The data were put through a two-step calculation to arrive at a measure of clarity. Similarly, data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Aqua satellite was compared with measurements of turbidity gathered on the ground and then applied to each whole image to make the maps.

When compared with results from independent field measurements, collected with the help from the U.S. Geological Survey, the researchers found that the satellites offered an accurate measure of water quality in the bay. The method can be applied to coastal waters worldwide with little change in methods, according to Muller-Karger.

Frequent measurements from space could resolve questions about the specific timing and nature of events that led to decreases in water quality. Seasonal freshwater discharge from nearby rivers and runoff into the bay can carry nutrients. If these nutrients are not controlled, they can give rise to large and harmful phytoplankton blooms, which can kill sea grass. Wind conditions, however, are the driving force for a decline in water quality in the dry season between October and June, when bottom sediments are disturbed.

"It’s important to look at baseline conditions and see how they change with the seasons and over the years, and whether that change is due to development, coastal erosion, the extraction and dumping of sediments, or digging a channel," Muller-Karger says.

The SeaWiFS sensor was launched aboard the OrbView-2 satellite in 1997 to collect ocean color data. MODIS was launched aboard the Aqua satellite in 2002. The instrument collects measurements from the entire Earth surface every one to two days.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>