Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe water: simpler method for analyzing radium in water samples cuts testing time

30.08.2007
A simpler technique for testing public drinking water samples for the presence of the radioactive element radium can dramatically reduce the amount of time required to conduct the sampling required by federal regulations. The U.S. Environmental Protection Agency (EPA) has approved use of the new testing method.

The technique – developed by Bernd Kahn, director of the Georgia Tech Research Institute’s (GTRI) Environmental Radiation Center (ERC), and GTRI senior research scientist Robert Rosson – became advantageous when the EPA established new radionuclide drinking water standards in 2000.

While radium is found at low concentrations in soil, water, plants and food, the greatest potential for human exposure to radium is through drinking water. Research shows that inhalation, injection, ingestion or body exposure to relatively large amounts of radium can cause cancer and other disorders. Since radium is chemically similar to calcium, it has the potential to cause harm by replacing calcium in bones.

As a result, drinking water systems are now required to sample and report on the amounts of two isotopes, radium-226 and radium-228, that are sometimes found in drinking water supplies.

“The Georgia Department of Natural Resources recognized the applicability and benefits of our method because of the new rules and proposed it to the EPA in 2002,” said Kahn.

The new method developed at GTRI requires only two steps. First, hydrochloric acid and barium chloride are added to a sample of water and heated to boiling. Then concentrated sulfuric acid is added and the radium precipitate is collected, dried and weighed. The samples are then counted with a gamma-ray spectrometry system to determine the content of radium-226 and radium-228.

A gamma-ray spectrometer determines the energy and the count rate of gamma rays emitted by radioactive substances. When these emissions are collected and analyzed, an energy spectrum can be produced. A detailed analysis of this spectrum is used to determine the identity and quantity of radioisotopes present in the source.

“The old method took four hours for each type of radium you needed to test—totaling eight hours for radium-226 and radium-228,” said Rosson. “Our method does the two tests simultaneously and it takes about half an hour of actual technician time.”

Previously approved EPA methods for measuring radium required several isolation and purification steps involving sequential precipitations from large sample volumes and sometimes liquid-liquid extractions. They all ended with a complicated final preparation step before measurement with an alpha scintillation detection system. The scintillation detector detects and counts the flashes of light that are produced when a radioactive substance interacts with a special coating on the inside of the detection container.

The EPA’s December 2007 deadline requiring every water supply be tested for radium-228 and gross alpha radioactivity greatly increased the number of radium-228 measurements required, as well as the likelihood both radium-226 and radium-228 must be measured in the same sample, also increasing the number of measurements required.

If the total radium concentration measured is above five picocuries per liter, then the water supply is out of compliance and radium-226 and radium-228 must be measured quarterly. This may require the water source to be replaced or treated to reduce the radium concentration. If the amount of radioactivity measured is less than five picocuries per liter, samples may be collected at three-, six- or nine-year intervals.

Since the EPA approved this new testing procedure in July 2006, GTRI’s ERC has been able to use the testing method they developed to analyze water samples from Georgia’s Department of Natural Resources.

“We analyze about 1,200 samples per year for them. With 3,000 to 6,000 water supply entry points in Georgia, we’re not done yet,” noted Rosson.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>