Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative civil engineering application promises cleaner waters

29.08.2007
Streams, lakes, and bays may soon be cleaner thanks to an innovative approach to managing stormwater runoff being developed at Virginia Tech and funded by the U.S. Environmental Protection Agency (EPA).

A novel software application will help engineers and planners select the most efficient and site specific methods – called “Best Management Practices” (BMPs) – of controlling the amount of pollutants that enter the receiving waters through stormwater runoff.

Pollutants are washed off the roads, parking lots, or other surfaces by stormwater, and include toxic motor oil, pesticides, metals, bacteria, and trash. The Congressional Research Service reported in 2007 that up to 50 percent of water pollution problems in the United State are attributed to stormwater runoff.

The application is the product of collaboration between faculty and researchers from Virginia Tech’s Virginia Water Resources Research Center (http://www.vwrrc.vt.edu), the Center for Geospatial Information Technology in the College of Natural Resources (http://www.cgit.vt.edu), and the Via Department of Civil and Environmental Engineering in the College of Engineering (http://www.cee.vt.edu).

The new BMPs selection approach, called Analytical Hierarchy Process (AHP), will factor in dozens of site-specific criteria such as soil types, land slopes, or maintenance accessibility before choosing the optimal BMPs for a particular location.

“This technique is expected to drastically reduce the BMP selection time and will also eliminate the human error from such a complex process,” says project coordinator Tamim Younos, water center associate director and research professor of water resources in the Department of Geography in the College of Natural Resources. Other project leaders include Randy Dymond, CGIT co-director, and David Kibler, professor of civil and environmental engineering.

Traditionally, the selection of BMPs has been done only by proficient stormwater experts guided by little more than vaguely written regulations, experience, and intuition. “They rely heavily on past knowledge, tradition, or even personal preference for particular methods of controlling stormwater runoff,” explains Kevin Young, research associate at CGIT.

Young adds that all too often personal bias has led to “cookie-cutter” solutions to very complex stormwater management needs, resulting in poor control of the pollutants.

A widely used, conventional BMP is to build detention ponds near commercial or residential areas, regardless of the actual construction site needs and conditions. “The stormwater is directed to a detention pond where gravity takes over, depositing sediment and some pollutants onto the bottom,” says Younos. “Pond overflow that still may contain dissolved pollutants reaches streams, rivers, and lakes, and possibly groundwater.”

Other types of BMPs are trenches and porous pavement that allow the stormwater to infiltrate the ground, vegetated wetlands, and sand filters that help sift the pollutants, or proprietary stormwater technologies such as hydrodynamic separators.

The new tool will be pilot-tested on Town of Blacksburg’s storm water system and the local Stroubles Creek watershed. The AHP software will be used by the research team to select BMPs within the watershed contributing runoff to Stroubles Creek, the town’s main receiving water body. Two existing computer models will then be used to simulate how efficient the selected BMPs are at removing the stormwater runoff pollutants.

“The best part about conducting a pilot test on Blacksburg is that the town will be able to implement our recommendations,” says Younos. “We are very pleased by the town’s enthusiasm and support for this project.” Other stakeholders include the New River Planning District Commission, Virginia Department of Environmental Quality, and Virginia Department of Conservation and Recreation.

Young discussed the principles of this novel approach to managing stormwater runoff in his Master’s thesis, under the guidance of the late professor G. V. Loganathan.

The software, expected to be available next year, will be free for use by all interested engineers and planners, localities, and BMP review authorities, and will be applicable in other states with geographic and climatic environments similar to Virginia.

Ana Constantinescu | EurekAlert!
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>