Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study takes first look at toxic air pollution in urban parking garages, finds SUVs bigger polluters

28.08.2007
The pollution produced by light trucks, SUVs and minivans is only half a percent higher than that produced by conventional cars, based on a recent study.

But researchers say that this tiny difference becomes enormous when considering the number of light trucks moving along the nation's highways.

“That small difference becomes tremendously magnified when you consider the billions of miles traveled by automobiles every day in this country,” said Timothy Buckley, the study's senior author and an associate professor of environmental health sciences at Ohio State University.

“There are easily tens of millions of light trucks on the roads every day.”

While the findings are linked to vehicle driving, the conclusions derive from a study of air quality inside an inner-city parking garage, one of the many “micro-environments” found within cities.

It's the first study to take a comprehensive look at the concentration of certain automobile-related toxic air pollutants inside a parking garage, said Sung Kim, the study's lead author and a postdoctoral fellow with the Johns Hopkins Bloomberg School of Public Health.

The researchers found that the emission of key pollutants from light trucks – a category that includes SUVs and minivans – was 0.5 to 0.6 percent greater than the pollutant levels released by cars.

Buckley says that although he and his colleagues expected to see a bigger impact from light trucks, the seemingly tiny difference between a car and an SUV shouldn't be discounted.

The results appear online at the Articles in Press website for the journal Environmental Research. Buckley and Kim conducted the study with Francesca Dominici, also with the Bloomberg School of Public Health at Johns Hopkins.

The researchers conducted their study in one eight-story parking garage in downtown Baltimore, Md. The garage has parking for 1,400 autos and is used by employees and visitors coming to a local hospital and university.

Vehicles were put into one of two categories – light trucks, which included SUVs and minivans, and cars, which included station wagons. A video camera set up at the garage entrance recorded the autos as they entered the facility.

The air within the garage was monitored eight hours a day, from 7 a.m. until 3 p.m., for 24 consecutive days. The monitors were used to analyze three kinds of pollutants that are emitted from nearly all gasoline-powered vehicles: carbon monoxide (CO), particle-bound polycyclic aromatic hydrocarbons (pPAH) and several volatile organic compounds (VOCs).

“These pollutants include known and suspected carcinogens,” Buckley said. “Pedestrian exposure to high levels of these air toxics within parking garages is of concern because of the proximity and intensity of the vehicle activity within the semi-closed environment.”

The researchers monitored air pollution and traffic in the garage during the summer of 2002. After the 24-day monitoring period, they watched the videotape, counting and classifying each vehicle as either a car or a light truck. They separated the vehicle counts into 30-minute blocks of time. Each 30-minute segment of videotape was matched with the same 30 minute segment of pollution data.

Light trucks accounted for about one out of every three vehicles using the garage. For some of the pollutants, the study's authors were able to attribute an increase in air pollution of 0.5 to 0.6 percent per vehicle for light trucks, relative to cars.

As expected, far fewer vehicles used the garage on the weekend (about six per half-hour) than the weekday (an average of 71 vehicles per half-hour.) This 12-fold reduction in traffic volume from weekday to weekend was matched by a 2- to 7-fold reduction in air pollution.

“The less than one-to-one reduction in pollution is likely due to surrounding traffic influences,” Buckley said. “We didn't specifically measure air pollution coming from traffic outside the garage.”

Buckley and his colleagues say that measured pollutant concentrations inside the parking garage are not very different from levels outside the garage. The researchers compared the concentrations of VOCs in the parking garage to VOC pollution data collected by an outdoor monitoring station in downtown Baltimore by a different group of researchers.

“Our goal was to give some perspective to the concentrations recorded in the garage, and we wanted some basis of comparison,” Buckley said. “We were pleasantly surprised to see that the garage concentrations were in fact lower than what was measured at a nearby outdoor site.”

However, Buckley cautions against reading too much into this comparison, since the time frame and measurement methods differed between the two studies.

“Ours is the first study that has described the concentration of vehicle-related hazardous air pollutants in a parking garage,” he said. “We wanted to know what those concentrations were, and how they varied within and between days to better understand the health risk.

“Our conclusion is that they're comparable to, or even less than, concentrations seen in other urban settings.”

Buckley plans to continue this research to better understand traffic-related “hotspots” and these areas contribute to air pollution. Future studies may include the type of fuel that a vehicle uses (i.e. gasoline vs. diesel) as well as the age, make and model of a vehicle, which all may factor into the amount of pollution it creates.

The study was funded through the Johns Hopkins Bloomberg School of Public Health Center for a Livable Future, the Johns Hopkins NIEHS Center for Urban Environmental Health and grants from the U.S. Environmental Protection Agency.

Timothy Buckley | EurekAlert!
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>