Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly sensitive weather radar a gain for climate research

27.08.2007
The Delft University of Technology (TU Delft) has taken a new weather radar system into use, the 'Drizzle Radar', which can observe even the lightest of drizzles.

This is an enormous gain for climate researchers and is attracting international attention. The radar was successfully installed on the 213 metre-high Royal Netherlands Meteorological Institute (KNMI) measurement tower on the 23rd of August. From this spot the highly sensitive radar, together with the other advanced instruments of the CESAR observatory (Cabauw Experimental Site for Atmospheric Research), is to provide a complete picture of the interaction between dust, clouds, rain and radiation. The latter is still one of the least understood factors in climate models.

Clouds and the climate

Clouds are of great importance for the greenhouse effect. On the one hand, clouds wrap a blanket round the Earth which retains heat, but they also cool the planet through the reflection of sunlight. Clouds can therefore compensate for some of the global warming, but the question is how much, and how precisely does it work. Dust particles play a crucial role in the formation of clouds and precipitation. They act as condensation nuclei, around which small droplets form. In an atmosphere without dust, clouds would not even be able to form. The more dust particles, the more clouds, the more solar radiation is reflected and the cooler the Earth stays.

A cooler Earth leads, in its turn, to less precipitation, because cooler air cannot hold as much moisture as warm air. Thus we have an extremely complicated interplay of factors that can be elucidated only through detailed measurements. The new Drizzle Radar is able to measure cloud droplets and precipitation extremely accurately. In addition, the measurement tower in Cabauw monitors the quantity and composition of dust particles and of clouds. Climate researchers are particularly interested in the extent to which dust particles influence rainfall.

IDRA

The International Research Centre for Telecommunications and Radar (IRCTR) Drizzle Radar, or IDRA, developed by TU Delft, is able to measure the smallest raindrops in a thirty kilometre zone around the observatory. The data are used to determine cloud life cycles, and their relationship to radiation and airborne dust. These measurements, which will lead to a better understanding of the climate system, are unique in the world and can be done nowhere else.

CESAR

The CESAR Observatory in Cabauw is one of the world’s most advanced observatories for atmospheric research. Its highly accurate, multi-instrument array constantly measures atmospheric characteristics, to obtain a better picture of the atmosphere’s role in the climate system. The most eye-catching feature is the 213 metre-high measurement tower of the KNMI, where the Drizzle Radar has now been installed. CESAR is a consortium of KNMI (Royal Netherlands Meteorological Institute), TU Delft (Delft University of Technology), TNO (Netherlands Organisation for Applied Scientific Research), RIVM (National Institute of Public Health and Environmental Protection), ECN (Energy Research Centre of the Netherlands), Wageningen University and ESA (European Space Agency).

Roy Meijer | alfa
Further information:
http://www.tudelft.nl/live/pagina.jsp?id=a297e7ee-4494-4d26-b6f1-7a7d0f8061fd&lang=en

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>