Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man-made soot contributed to warming in Greenland in the early 20th century

14.08.2007
Findings shed new insights into how human activity affects polar climates

New research shows that industrial development in North America between 1850 and 1950 greatly increased the amount of black carbon--commonly known as soot-- that fell on Greenland's glaciers and ice sheets. The soot impacted the ability of the snow and ice to reflect sunlight, which contributed to increased melting and higher temperatures in the region during those years. This discovery may help scientists better understand the impact of human activities on polar climates.

In an article published today in the online edition of Science magazine, a team led by Joe McConnell and Ross Edwards from the Desert Research Institute (DRI) in Reno, Nev., report that these increased levels of soot deposits were the result of human activity and in some years were as much as eight times larger than naturally-occurring soot deposits measured in the years before 1850.

The research, funded by the National Science Foundation and NASA, indicates that these elevated levels of soot decreased the snow and ice pack's ability to reflect sunlight. This decreased level of reflectivity, or albedo, in scientific terms, allowed the surface to absorb more energy from the sun. These changes may have resulted in earlier snow melt and exposure of darker rocks, soil and sea ice, leading to warming throughout Greenland in the late 19th and early 20th century when soot levels were at their highest.

Using a new method for measuring soot in snow and ice, researchers captured and analyzed ice core samples from various regions of Greenland. These samples allowed them to analyze annual deposits of soot and other chemical going back more than two centuries. The results show that the source of most of the black carbon soot landing in the region changed from natural causes such as forest fires and volcanic eruptions to industrial sources.

"In addition to black carbon, we measured a broad range of other chemicals at very high depth resolution in this same ice core," said lead author McConnell.

Among the other chemicals measured were vanillic acid and sulfur, two indicators of forest fire and industrial emissions, respectively. "When we compare changes in the black carbon to changes in these other indicators, it is clear that most of the increases in black carbon in the late 19th and early 20th centuries, particularly in winter and spring, resulted from industrial emissions - probably from coal burning," McConnell added.

The amount of black carbon deposited during this period increased quickly, reaching a peak around 1910.

A team of researchers from DRI, the University of California, the University of Wisconsin, and Droplet Measurement Technologies combined the measurements of these deposits with sophisticated modeling to measure how the soot traveled from North America to Greenland and how it impacted the region's climate.

"We used computer models to simulate the climate forcing impact of the observed changes in soot concentrations in Greenland snow during the past 215 years," said co-author Mark Flanner from the University of California.

Simulations were also used to extend the climate forcing results from central Greenland to the entire Arctic based on regional-scale models. From these simulations, the average impact from soot pollution over the Arctic was about double that found for central Greenland. Early summer climate forcing throughout the Arctic during and after industrialization was substantial, with changes largely attributed to winter-time pollution. In the peak period from 1906 to 1910, the warming effect of the industrial soot throughout the Arctic was estimated at eight times that during the pre-industrial period.

By tracking the possible trajectories of major snowfalls events that would have transported and deposited the black carbon to largely undeveloped Greenland, the researchers conclude that industrial areas of the United States and Canada were the most likely sources of the increased soot levels during the past century. Boreal forest fires in northern and eastern Canada and the United States were the likely sources of the natural black carbon found in the ice core.

These findings have the potential to help climate scientists better understand the impact of human activity on polar climates.

Co-author Edwards added, "In order to understand why Arctic climate is changing so rapidly at present, we need to understand how and why it has changed both before and after human activities had an influence on climate. To do this properly, we need to know the seasonal history of soot deposition and its impact on Arctic snow albedo during the past few centuries. Our results allow this component of climate change to be incorporated into predictive climate models in a more realistic way."

Dana Cruikshank | alfa
Further information:
http://www.nsf.gov/mynsf/
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>