Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment suggests limitations to carbon dioxide 'tree banking'

08.08.2007
While 10 years of bathing North Carolina pine tree stands with extra carbon dioxide did allow the trees to grow more tissue, only those pines receiving the most water and nutrients were able to store significant amounts of carbon that could offset the effects of global warming, scientists told a national meeting of the Ecological Society of America (ESA).

These results from the decade-long Free Air Carbon Enrichment (FACE) experiment in a Duke University forest suggest that proposals to bank extra CO2 from human activities in such trees may depend on the vagaries of the weather and large scale forest fertilization efforts, said Ram Oren, the FACE project director.

"If water availability decreases to plants at the same time that carbon dioxide increases, then we might not have a net gain in carbon sequestration," said Oren, a professor of ecology at Duke's Nicholas School of the Environment and Earth Sciences.

"In order to actually have an effect on the atmospheric concentration of CO2, the results suggest a future need to fertilize vast areas," Oren added. "And the impact on water quality of fertilizing large areas will be intolerable to society. Water is already a scarce resource. "

In a presentation delivered on Tuesday, Aug. 7 by Heather McCarthy, Oren's former graduate student, eight scientists working at the FACE site reported on the daily administrations of 1 1/2 times today's CO2 levels and how it has changed carbon accumulations in plants growing there.

The Department of Energy-funded FACE site consists of four forest plots receiving extra CO2 from computer-controlled valves mounted on rings of towers, and four other matched plots receiving no extra gas.

Trees in the loblolly pine-dominated forest plots that were treated produced about 20 percent more biomass on average, the researchers found. But since the amounts of available water and nitrogen nutrients varied substantially from plot to plot, using averages could be misleading.

"In some areas, the growth is maybe 5 or 10 percent more, and in other areas it's 40 percent more," Oren said. "So in sites that are poor in nutrients and water we see very little response. In sites that are rich in both we see a large response."

The researchers found that extra carbon dioxide had no effect on what foresters call "self thinning" -- the tendency of less-successful trees to die off as the most-successful grow bigger.

"We didn't find that elevated CO2 caused any deviation from this standard relationship," said McCarthy, now a postdoctoral fellow at the University of California, Irvine.

Also unchanged by the CO2 enrichment were the proportions of carbon atoms that found their way to various components of plant systems -- wood, leaves, roots and underlying soil. Only a few of those components will store carbon over time, noted Oren and McCarthy.

"Carbon that's in foliage is going to last a lot shorter time than carbon in the wood, because leaves quickly decay," McCarthy said. "So elevated CO2 could significantly increase the production of foliage but this would lead to only a very small increase in ecosystem carbon storage."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>