Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tipping points

08.08.2007
Symposium to explore connection between agriculture and global change

Growing food and fiber entails the use of fertilizer and irrigation systems and results in land clearing. These ‘side effects’ of agriculture can lead to regime shifts—or ‘tipping points’ which include desertification, salinisation, water degradation, and changes in climate due to altered water flows from land to atmosphere.

As human populations shift to more meat-heavy diets, trade of agricultural products increases, and demand for biofuels grows, the pressure on agricultural systems is mounting. The challenge is to figure out how to meet these demands and keep the ecosystem functions that underpin productivity working. So say researchers who will participate in a symposium, “Tipping points in the biosphere: Agriculture, water, and resilience” during the Ecological Society of America’s Annual Meeting.

Tipping points occur when an ecosystem is overwhelmed by the demands placed on it and can no longer function the way it did before. In other words, it loses its resiliency which ultimately can lead to land that is rendered useless for growing crops.

Elena Bennett (McGill University), organizer of the symposium, says that we need to better understand large scale regime shifts in order to develop policies that sustain, rather than degrade, the very systems upon which humanity depends.

“One of the reasons agricultural landscapes are so prone to regime shifts is that our management of them has tended to focus exclusively on improving one type of ecosystem service (e.g. food production, fiber production, biofuels production) at the cost of all others,” explains Bennett.

She notes that agriculture is now one of the main driving forces of global environmental change. Bennett and other presenters in this session have identified potential tipping points related to water and agriculture that could have major global consequences.

No human activity has so large an impact on water systems as does agriculture, according to Johan Rockstrom (Stockholm Environment Institute, Sweden). He notes that the future will bring an even greater demand on fresh water for food production—by 2050 global water use for food production alone will need to double.

Line Gordon (Stockholm University, Sweden) will examine the redistribution of vapor flows brought about by irrigation. Gordon notes that the pattern of change varies and identifies the mid-United States, the Amazon, the Sahel, India, and Northern China as the most likely areas to undergo climate change, driven by these altered continental vapor flows.

Ellen Marie Douglas (University of Massachusetts) will focus on potential impacts on India’s Monsoon Belt, home to a large part of the globe’s population. India has the largest irrigated agricultural area in the world, with more than 90 percent of the country’s water supporting irrigated agriculture. Vapor fluxes in India’s wet season are up by 7 percent and are up 55 percent in the dry season. Douglas and her colleagues attribute two-thirds of this change to irrigated agriculture.

Drawing from research examples in the Mississippi River, Simon Donner (Princeton University), will discuss the role of nitrogen fertilizer in the health of downstream ecosystems, in particular their potential sensitivity to climate change.

Navin Ramankutty (McGill University) likens land use changes to fuel emissions in their potential to drive climatic changes. According to Ramankutty, local land cover changes may very likely generate changes elsewhere by altering the general circulation of the atmosphere. He points to Canada, Eastern Europe, the former Soviet Union, Mexico, and Central America as places where land clearing for cultivation may have inadvertently decreased suitability for growing crops.

Brandon Bestelmeyer (USDA-ARS Jornada Experimental Range) will examine tipping points in rangelands and will explore various socio-economic factors contributing to rangeland degradation.

Others presenting at the session are Garry Peterson (McGill University), Lance Gunderson (Emory University), and Max Rietkerk (Utrecht University, The Netherlands).

“Our hope is that if we can identify potential regime shifts, we can alter our management to avoid them,” says session organizer Bennett.

Nadine Lymn | EurekAlert!
Further information:
http://www.esa.org/sanjose/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>