Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space-borne sensors help Africa tackle water shortage problems

06.08.2007
Zambian water authorities are integrating information based on satellite imagery to alleviate water shortages. With inadequate information causing many water-related problems, an ESA project has generated a variety of environmental maps to provide local policy makers with the necessary tools for effective water resource management.

As part of the IWAREMA (Integrated Water Resource management for Zambia) project, funded through ESA’s Data User Element, data from ESA’s multispectral MERIS sensor aboard Envisat was used to create maps depicting existing water resources, suitable dam locations and land cover. The project is carried out by the Belgium Company GIM (Geographic Information Management) in partnership with the University of Zambia and the Zambian water authorities.

"The results of the IWAREMA project can be used to protect Zambia’s ecosystems particularly in the Kafue flats where wildlife, agricultural activities, fisheries and tourism compete for regulated water resources," Jack Nkhoma of Zambia’s Department of Water Affairs said.

Having access to these maps allows authorities to determine the expansion of urban areas and loss of forest and agricultural areas as well as calculate the risk of erosion, change in water availability and percentage of surface water, which will allow for early flood warnings.

The land cover change maps will help the government look at past trends in terms of deforestation, reclaimed land and new settlement areas to determine the long term affect and implement corrective measures.

Zambia has one of the highest urban populations in Sub-Saharan Africa, with about 34 percent of the total country population of nearly 11 million people living in urban areas, according to the United Nations Human Settlement Programme. The rate of urbanisation has been unprecedented and has therefore exceeded the rate of infrastructure development and service provision, such as water supply and sanitation.

"With a lot of pressure from population growth and urbanisation, the land cover maps will show how demographic variables and pressures will impact natural resources," Nkhoma said.

The project focused on the Kafue River Basin, which is a sub-basin of the Zambezi River. The Kafue Basin is of great importance to the country’s economy and is home to more than half of the country’s population.

"The IWAREMA project information is useful for our policy makers in decision making for the basin and should be extended to other basins of the Zambezi so as to improve the data situation and make comparisons between areas, as very little information is currently available," Banda Kawawa of the University of Zambia said. "The products have also shown to be cost effective in relation to other conventional methods used."

IWAREMA was one of the projects initiated under ESA’s TIGER initiative, launched in 2002 to assist African countries to overcome water-related problems and to bridge Africa's water information gap using satellite data. To date, more than 100 African water basin authorities, universities and other organisations have become involved in TIGER projects across the continent.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMI01C474F_economy_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>