Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wider buffers are better

01.08.2007
When protecting wetlands from nitrogen pollution, an EPA study points to wider, vegetated borders around streams as most effective

Excess nitrogen caused by fertilizers, animal waste, leaf litter, sewer lines, and highways is responsible for contaminating groundwater. It can also cause human health risks when found in drinking water and oxygen depleted water bodies endangering animals that drink from them. Establishing Riparian buffers is considered a best management practice (BMP) by State and Federal resource agencies for maintaining water quality, and they may be especially critical in controlling amounts of human produced nitrogen.

Scientists at the U.S. Environmental Protection Agency collected data on the buffers along with nitrogen concentration in streams and groundwater to identify trends between nitrogen removal and buffer width, water flow path and vegetation. They found wide buffers (>50 meters) removed more nitrogen than narrow buffers (0-25 meters). Buffers of different vegetation types were equally effective but herbaceous and forest vegetation were more effective when wider. Removal of nitrogen within the water was efficient, but not related with buffer width; however removal on the water surface was related to buffer width. Nitrate nitrogen (sometimes used in fertilizer) did not differ by width, flow path or vegetation type. Results from the study are published in the July-August 2007 issue of the Journal of Environmental Quality.

The study suggested that buffer width is important for managing nitrogen in watersheds. Other factors such as soil saturation, groundwater flow paths, and subsurface chemical/organism relations are important for governing nitrogen removal in buffers. Vegetation type also may be an important factor in certain landscapes and hydrologic settings where forested buffers may prevent nitrogen in deep groundwater or contribute more organic carbon in streams. Riparian buffers of herbaceous vegetation or a mix with forest vegetation were found to be effective only when wider.

Riparian services provide numerous ecosystem services beyond nitrogen removal, and although buffer width, dimension, and vegetation type provide benefits such as stream shading and water temperature maintenance, fish and wildlife habitat, or sediment control; there may be other buffer characteristics more favorable in removing nitrogen. In any case, watershed nutrient management efforts also must include control and reduction of specific and general sources of nitrogen from atmospheric, land, and water inputs.

Research is ongoing at the U.S. Environmental Protection Agency to assess the nutrient removal capacity of riparian buffers. Because buffers are often degraded or removed due to land use change (e.g. agriculture and urbanization), there is need for further research to identify the most effective methods for restoration. This could lead to the enhanced nutrient removal and optimal riparian areas needed for restoration to have the greatest impact with minimum resources spent.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org
http://jeq.scijournals.org/cgi/content/abstract/36/5/1368

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>