Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Threatens Siberian Forests

01.08.2007
University Of Leicester Study Finds Changing Climate Contributes To Rise In Forest Fires

Catastrophic forest fire outbreaks in Siberia are happening more frequently because of climate change, new research published in the “Journal of Climate” on 1 August 2007 has found.

In Central Siberia alone, fires have destroyed 38 000 km2 in the extreme fire year of 2003. In that year the smoke plumes were so huge that they caused air pollution as far as in the United States. An international team of scientists believes that Siberian fires are influenced by climate change. The study was led by the Professor Heiko Balzter of the Department of Geography at the University of Leicester.

Professor Balzter said “Last century a typical forest in Siberia had about 100 years after a fire to recover before it burned again. But new observations by Russian scientist Dr Kharuk have shown that fire now returns more frequently, about every 65 years. At the same time annual temperatures in Siberia have risen by almost two degrees Celsius, about twice as fast as the global average. And since 1990 the warming of Siberia has become even faster than before.”

Global warming leads to warmer springs and causes plants to green up earlier. This has already been observed for the UK. Over Russia the scientists found similar trends towards an earlier spring.

The scientists observed 18 years of satellite images of the region, and estimated the timing of the onset and end of the growing season, when the snow has melted and the plants take up carbon from the air during plant growth. From 1982 to 1999 almost all Siberian ecosystems showed an earlier onset of spring. The strongest advance of spring was observed in Urban areas (0.74 days advance per year), Deciduous Broadleaf Forest (0.46 d/a), Forest - Cropland complexes (0.62 d/a), Humid grasslands (0.35 d/a) and Cropland - Grassland complexes (0.45 d/a).

“Central Siberia has a more continental climate. The changes in the timing of spring and also in fire occurrence are linked to temperature changes and a climate pattern that scientists call the Arctic Oscillation” said Professor Balzter. “Towards the East Siberian coast the Pacific plays a more important role, and the El Niño phenomenon together with low rainfall determines what happens to the forest”.

In the continental parts of Central Siberia the Arctic Oscillation and corresponding heat waves are thought to control the fire regime, while in East Siberia El Niño conditions and droughts are thought to play a major role.

“Planet Earth is always more complicated than you think”, says Professor Balzter, “The lengthening of the growing season that has been described in the scientific literature is a non-linear phenomenon. It is influenced by feedbacks between the atmosphere and the forest, which responds to rising greenhouse gas levels and higher temperatures.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>