Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Threatens Siberian Forests

01.08.2007
University Of Leicester Study Finds Changing Climate Contributes To Rise In Forest Fires

Catastrophic forest fire outbreaks in Siberia are happening more frequently because of climate change, new research published in the “Journal of Climate” on 1 August 2007 has found.

In Central Siberia alone, fires have destroyed 38 000 km2 in the extreme fire year of 2003. In that year the smoke plumes were so huge that they caused air pollution as far as in the United States. An international team of scientists believes that Siberian fires are influenced by climate change. The study was led by the Professor Heiko Balzter of the Department of Geography at the University of Leicester.

Professor Balzter said “Last century a typical forest in Siberia had about 100 years after a fire to recover before it burned again. But new observations by Russian scientist Dr Kharuk have shown that fire now returns more frequently, about every 65 years. At the same time annual temperatures in Siberia have risen by almost two degrees Celsius, about twice as fast as the global average. And since 1990 the warming of Siberia has become even faster than before.”

Global warming leads to warmer springs and causes plants to green up earlier. This has already been observed for the UK. Over Russia the scientists found similar trends towards an earlier spring.

The scientists observed 18 years of satellite images of the region, and estimated the timing of the onset and end of the growing season, when the snow has melted and the plants take up carbon from the air during plant growth. From 1982 to 1999 almost all Siberian ecosystems showed an earlier onset of spring. The strongest advance of spring was observed in Urban areas (0.74 days advance per year), Deciduous Broadleaf Forest (0.46 d/a), Forest - Cropland complexes (0.62 d/a), Humid grasslands (0.35 d/a) and Cropland - Grassland complexes (0.45 d/a).

“Central Siberia has a more continental climate. The changes in the timing of spring and also in fire occurrence are linked to temperature changes and a climate pattern that scientists call the Arctic Oscillation” said Professor Balzter. “Towards the East Siberian coast the Pacific plays a more important role, and the El Niño phenomenon together with low rainfall determines what happens to the forest”.

In the continental parts of Central Siberia the Arctic Oscillation and corresponding heat waves are thought to control the fire regime, while in East Siberia El Niño conditions and droughts are thought to play a major role.

“Planet Earth is always more complicated than you think”, says Professor Balzter, “The lengthening of the growing season that has been described in the scientific literature is a non-linear phenomenon. It is influenced by feedbacks between the atmosphere and the forest, which responds to rising greenhouse gas levels and higher temperatures.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>