Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT aims for kinder, gentler scallop dredge

01.08.2007
Cliff Goudey's version of the better mousetrap is the better scallop dredge.

The director of MIT Sea Grant's Center for Fisheries Engineering Research wants to build a better dredge-even though he's the first to admit that current dredges do a fine job of catching the creatures.

What current dredges don't do, says Goudey, is take into consideration unintended consequences, such as damaging bottom habitat -- a concern since the 1986 reauthorization of the Magnuson- Stevens Act introduced the issue of essential fish habitat.

The standard dredge used to harvest scallops consists of a heavy steel towing frame and a chain bag that drags along the sea floor behind the frame. The dredge includes a cutting bar, which has little effect on a perfectly level bottom. However, on a more typical sea bottom with sand waves or humps and valleys, the cutting bar levels the bottom so that the chain bag can scoop up scallops in its path.

But along with the scallops, says Goudey, other organisms living on and buried just below the surface can get caught or damaged.

Is there a way to catch scallops without leveling the bottom in front of the dredge?

Goudey figured that would require disturbing or lifting the scallops, in preparation for the chain bag, without physically contacting the ground. The best option for that, he decided, was to use jets of water. So Goudey experimented with devices of different shapes and sizes to see how they affected scallop shells placed on the bottom of MIT's towing tank. The most promising results were implemented in a prototype dredge.

“We built a small dredge fitted with four 11-inch hollow hemispheres positioned close to the seabed and mounted on pivots so that if they hit something they could deflect up out of the way,” says Goudey. The hemispheres “produce a downward directed jet of water that seems to have a profound effect on scallops when they're hit by it,” he explains. Goudey notes that most mobile creatures near the dredge can escape from its path. “While a conventional dredge impacts subsurface organisms, this one does not,” he said.

“Essentially the scallops...start spinning up in the water high enough so that they're still suspended in the water when the chain bag comes by.”

In field tests on Stellwagen Bank off the Massachusetts coastline, the newfangled scallop dredge caught 50- to 60 percent of a normal catch. “We believe that with a little adjusting...that catch rate could become competitive,” says Goudey.

A talk Goudey gave prompted an invitation from the University of Wales in Ireland to try the dredge out off the Isle of Man. So in April, Goudey shipped the dredge across the Atlantic, then followed along for field tests.

In those trials, the researchers used the dredge aboard a research vessel and a commercial scallop trawler, both with the participation of local fishermen. The dredge was particularly successful in catching queen scallops. A lower than expected catch of larger types of scallops suggested that some simple modifications may make the dredge more effective. Additionally, the dredge caused far less damage to scallops than conventional gear. As a result, Ireland may employ a version of the gear as part of a developing management strategy for scallop fisheries.

Written by Andrea Cohen, MIT Sea Grant

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>