Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT aims for kinder, gentler scallop dredge

01.08.2007
Cliff Goudey's version of the better mousetrap is the better scallop dredge.

The director of MIT Sea Grant's Center for Fisheries Engineering Research wants to build a better dredge-even though he's the first to admit that current dredges do a fine job of catching the creatures.

What current dredges don't do, says Goudey, is take into consideration unintended consequences, such as damaging bottom habitat -- a concern since the 1986 reauthorization of the Magnuson- Stevens Act introduced the issue of essential fish habitat.

The standard dredge used to harvest scallops consists of a heavy steel towing frame and a chain bag that drags along the sea floor behind the frame. The dredge includes a cutting bar, which has little effect on a perfectly level bottom. However, on a more typical sea bottom with sand waves or humps and valleys, the cutting bar levels the bottom so that the chain bag can scoop up scallops in its path.

But along with the scallops, says Goudey, other organisms living on and buried just below the surface can get caught or damaged.

Is there a way to catch scallops without leveling the bottom in front of the dredge?

Goudey figured that would require disturbing or lifting the scallops, in preparation for the chain bag, without physically contacting the ground. The best option for that, he decided, was to use jets of water. So Goudey experimented with devices of different shapes and sizes to see how they affected scallop shells placed on the bottom of MIT's towing tank. The most promising results were implemented in a prototype dredge.

“We built a small dredge fitted with four 11-inch hollow hemispheres positioned close to the seabed and mounted on pivots so that if they hit something they could deflect up out of the way,” says Goudey. The hemispheres “produce a downward directed jet of water that seems to have a profound effect on scallops when they're hit by it,” he explains. Goudey notes that most mobile creatures near the dredge can escape from its path. “While a conventional dredge impacts subsurface organisms, this one does not,” he said.

“Essentially the scallops...start spinning up in the water high enough so that they're still suspended in the water when the chain bag comes by.”

In field tests on Stellwagen Bank off the Massachusetts coastline, the newfangled scallop dredge caught 50- to 60 percent of a normal catch. “We believe that with a little adjusting...that catch rate could become competitive,” says Goudey.

A talk Goudey gave prompted an invitation from the University of Wales in Ireland to try the dredge out off the Isle of Man. So in April, Goudey shipped the dredge across the Atlantic, then followed along for field tests.

In those trials, the researchers used the dredge aboard a research vessel and a commercial scallop trawler, both with the participation of local fishermen. The dredge was particularly successful in catching queen scallops. A lower than expected catch of larger types of scallops suggested that some simple modifications may make the dredge more effective. Additionally, the dredge caused far less damage to scallops than conventional gear. As a result, Ireland may employ a version of the gear as part of a developing management strategy for scallop fisheries.

Written by Andrea Cohen, MIT Sea Grant

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>