Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT aims for kinder, gentler scallop dredge

01.08.2007
Cliff Goudey's version of the better mousetrap is the better scallop dredge.

The director of MIT Sea Grant's Center for Fisheries Engineering Research wants to build a better dredge-even though he's the first to admit that current dredges do a fine job of catching the creatures.

What current dredges don't do, says Goudey, is take into consideration unintended consequences, such as damaging bottom habitat -- a concern since the 1986 reauthorization of the Magnuson- Stevens Act introduced the issue of essential fish habitat.

The standard dredge used to harvest scallops consists of a heavy steel towing frame and a chain bag that drags along the sea floor behind the frame. The dredge includes a cutting bar, which has little effect on a perfectly level bottom. However, on a more typical sea bottom with sand waves or humps and valleys, the cutting bar levels the bottom so that the chain bag can scoop up scallops in its path.

But along with the scallops, says Goudey, other organisms living on and buried just below the surface can get caught or damaged.

Is there a way to catch scallops without leveling the bottom in front of the dredge?

Goudey figured that would require disturbing or lifting the scallops, in preparation for the chain bag, without physically contacting the ground. The best option for that, he decided, was to use jets of water. So Goudey experimented with devices of different shapes and sizes to see how they affected scallop shells placed on the bottom of MIT's towing tank. The most promising results were implemented in a prototype dredge.

“We built a small dredge fitted with four 11-inch hollow hemispheres positioned close to the seabed and mounted on pivots so that if they hit something they could deflect up out of the way,” says Goudey. The hemispheres “produce a downward directed jet of water that seems to have a profound effect on scallops when they're hit by it,” he explains. Goudey notes that most mobile creatures near the dredge can escape from its path. “While a conventional dredge impacts subsurface organisms, this one does not,” he said.

“Essentially the scallops...start spinning up in the water high enough so that they're still suspended in the water when the chain bag comes by.”

In field tests on Stellwagen Bank off the Massachusetts coastline, the newfangled scallop dredge caught 50- to 60 percent of a normal catch. “We believe that with a little adjusting...that catch rate could become competitive,” says Goudey.

A talk Goudey gave prompted an invitation from the University of Wales in Ireland to try the dredge out off the Isle of Man. So in April, Goudey shipped the dredge across the Atlantic, then followed along for field tests.

In those trials, the researchers used the dredge aboard a research vessel and a commercial scallop trawler, both with the participation of local fishermen. The dredge was particularly successful in catching queen scallops. A lower than expected catch of larger types of scallops suggested that some simple modifications may make the dredge more effective. Additionally, the dredge caused far less damage to scallops than conventional gear. As a result, Ireland may employ a version of the gear as part of a developing management strategy for scallop fisheries.

Written by Andrea Cohen, MIT Sea Grant

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>