Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Aerogels Could Clean Contaminated Water, Purify Hydrogen for Fuel Cells

31.07.2007
Scientists at the U.S. Department of Energy's Argonne National Laboratory have identified a new technique for cleansing contaminated water and potentially purifying hydrogen for use in fuel cells, thanks to the discovery of a innovative type of porous material.

Argonne materials scientists Peter Chupas and Mercouri Kanatzidis, along with colleagues at Northwestern and Michigan State universities, created and characterized porous semiconducting aerogels at Argonne's Advanced Photon Source (APS). The researchers then submerged a fraction of a gram of the aerogel in a solution of mercury-contaminated water and found that the gel removed more than 99.99 percent of the heavy metal. The researchers believe that these gels can be used not only for this kind of environmental cleanup but also to remove impurities from hydrogen gas that could damage the catalysts in potential hydrogen fuel cells.

"When people talk about the hydrogen economy, one of the big questions they're asking is ‘Can you make hydrogen pure enough that it doesn't poison the catalyst?'" Chupas said. "While there's been a big push for hydrogen storage and a big push to make fuel cells, there has not been nearly as big a push to find out where the clean hydrogen to feed all that will come from."

The aerogels, which are fashioned from chalcogenides — molecules centered on the elements found directly under oxygen in the periodic table — are expected to be able to separate out the impurities from hydrogen gas much as they did the mercury from the water: by acting as a kind of sieve or selectively permeable membrane. The unique chemical and physical structure of the gels will allow researchers to "tune" their pore sizes or composition in order to separate particular poisons from the hydrogen stream.

"You can put in elements that bind the poisons that are in the stream or ones that bind the hydrogen so you let everything else fall through," Chupas said. For example, gels made with open platinum sites would extract carbon monoxide, a common catalyst poison, he explained.

The research team had not intended to create the aerogels, but their discovery proved fortunate, said Kanatzidis. Originally, the researchers had used surfactants to produce porous semiconducting powders instead of gels. When one of the researchers ran the synthesis reaction without the surfactant, he noticed that gels would form time after time. "When we saw that these chalcogenides would make a gel, we were amazed," said Kanatzidis. "We turned the flask upside down and nothing flowed."

Generally, such reactions produce only uninteresting precipitates at the bottom of the flask, he said, so that in this case, "we knew we had something special."

Kanatzidis and his co-workers recognized that aerogels offered one remarkable advantage over powders: because the material maintained its cohesion, it possessed an enormous surface area. One cubic centimeter of the aerogel could have a surface area as large as a football field, according to Kanatzidis. The bigger the surface area of the material, the more efficiently it can bind other molecules, he said.

Previous experiments into molecular filtration had used oxides rather than chalcogenides as their chemical constituents. While oxides tend to be insulators, most chalcogenides are semiconductors, enabling the study of their electrical and optical characteristics. Kanatzidis hopes to examine the photocatalytic properties of these new gels in an effort to determine whether they can assist in the production, and not merely the filtration, of hydrogen.

Unlike periodic materials, which possess a consistent long-range structure, the gels formed by the Northwestern and Argonne researchers are highly disordered. As a result, conventional crystallographic techniques would not have effectively revealed the structure and behavior of the gels. The high-energy X-rays produced by the APS, however, allowed the scientists to take accurate readings of the atomic distances within these disorganized materials. "This is where the APS really excels. It's the only place that has a dedicated facility for doing these kinds of measurements, and it allows you to wash away a lot of old assumptions about what kinds of materials you can and cannot look at," Chupas said.

The paper, entitled "Porous semiconducting gels and aerogels from chalcogenide clusters," appears in the July 27 issue of Science.

The initial research into porous semiconducting surfactants was supported by a grant from the National Science Foundation. Use of the APS was supported by DOE, Office of Science, Office of Basic Energy Sciences.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

| newswise
Further information:
http://www.anl.gov/Media_Center/index.html

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>