Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Aerogels Could Clean Contaminated Water, Purify Hydrogen for Fuel Cells

31.07.2007
Scientists at the U.S. Department of Energy's Argonne National Laboratory have identified a new technique for cleansing contaminated water and potentially purifying hydrogen for use in fuel cells, thanks to the discovery of a innovative type of porous material.

Argonne materials scientists Peter Chupas and Mercouri Kanatzidis, along with colleagues at Northwestern and Michigan State universities, created and characterized porous semiconducting aerogels at Argonne's Advanced Photon Source (APS). The researchers then submerged a fraction of a gram of the aerogel in a solution of mercury-contaminated water and found that the gel removed more than 99.99 percent of the heavy metal. The researchers believe that these gels can be used not only for this kind of environmental cleanup but also to remove impurities from hydrogen gas that could damage the catalysts in potential hydrogen fuel cells.

"When people talk about the hydrogen economy, one of the big questions they're asking is ‘Can you make hydrogen pure enough that it doesn't poison the catalyst?'" Chupas said. "While there's been a big push for hydrogen storage and a big push to make fuel cells, there has not been nearly as big a push to find out where the clean hydrogen to feed all that will come from."

The aerogels, which are fashioned from chalcogenides — molecules centered on the elements found directly under oxygen in the periodic table — are expected to be able to separate out the impurities from hydrogen gas much as they did the mercury from the water: by acting as a kind of sieve or selectively permeable membrane. The unique chemical and physical structure of the gels will allow researchers to "tune" their pore sizes or composition in order to separate particular poisons from the hydrogen stream.

"You can put in elements that bind the poisons that are in the stream or ones that bind the hydrogen so you let everything else fall through," Chupas said. For example, gels made with open platinum sites would extract carbon monoxide, a common catalyst poison, he explained.

The research team had not intended to create the aerogels, but their discovery proved fortunate, said Kanatzidis. Originally, the researchers had used surfactants to produce porous semiconducting powders instead of gels. When one of the researchers ran the synthesis reaction without the surfactant, he noticed that gels would form time after time. "When we saw that these chalcogenides would make a gel, we were amazed," said Kanatzidis. "We turned the flask upside down and nothing flowed."

Generally, such reactions produce only uninteresting precipitates at the bottom of the flask, he said, so that in this case, "we knew we had something special."

Kanatzidis and his co-workers recognized that aerogels offered one remarkable advantage over powders: because the material maintained its cohesion, it possessed an enormous surface area. One cubic centimeter of the aerogel could have a surface area as large as a football field, according to Kanatzidis. The bigger the surface area of the material, the more efficiently it can bind other molecules, he said.

Previous experiments into molecular filtration had used oxides rather than chalcogenides as their chemical constituents. While oxides tend to be insulators, most chalcogenides are semiconductors, enabling the study of their electrical and optical characteristics. Kanatzidis hopes to examine the photocatalytic properties of these new gels in an effort to determine whether they can assist in the production, and not merely the filtration, of hydrogen.

Unlike periodic materials, which possess a consistent long-range structure, the gels formed by the Northwestern and Argonne researchers are highly disordered. As a result, conventional crystallographic techniques would not have effectively revealed the structure and behavior of the gels. The high-energy X-rays produced by the APS, however, allowed the scientists to take accurate readings of the atomic distances within these disorganized materials. "This is where the APS really excels. It's the only place that has a dedicated facility for doing these kinds of measurements, and it allows you to wash away a lot of old assumptions about what kinds of materials you can and cannot look at," Chupas said.

The paper, entitled "Porous semiconducting gels and aerogels from chalcogenide clusters," appears in the July 27 issue of Science.

The initial research into porous semiconducting surfactants was supported by a grant from the National Science Foundation. Use of the APS was supported by DOE, Office of Science, Office of Basic Energy Sciences.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

| newswise
Further information:
http://www.anl.gov/Media_Center/index.html

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>