Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switchable Adhesive: Gel- and polymer-coated surfaces stick together and separate in response to an environmental stimulus

26.07.2007
Two surfaces stick together, separate, and stick together again—on command.

This discovery by a team of researchers from the Universities of Sheffield (UK) and Bayreuth contradicts our day-to-day experience. In the animal kingdom, geckos can climb up vertical inclines, displaying an incredible switchable adhesion as they do so. Insects also use another form of switchable adhesion to sit on your ceiling and then fly off before you climb up on your chair with a rolled-up newspaper. How these animals can switch off and on adhesion is not yet understood in detail. But the scientists led by Mark Geoghegan reveal the secret of their “intelligent” adhesion in the journal Angewandte Chemie.

One of the surfaces involved consists of a polyacid gel, a three-dimensionally cross-linked polymer containing many acid groups. This polymer network is so heavily soaked in liquid that it forms a solid, gelatinous mass. The second surface is a silicon chip onto which a polybase has been deposited. This polybase consists of polymer chains that stretch brush-like from the support and contain many basic groups. In water or slightly acidic solution, the acidic groups carry a positive charge while the basic groups are negatively charged; this causes them to attract each other. In addition to this electrostatic attraction, hydrogen bonds are also formed, which causes the two surfaces to be tightly stuck together.

If the surrounding solution is made more strongly acidic (a pH value of about 1), the bonds break up, the basic groups lose their charge, and the electrostatic attraction lets up. The two surfaces can then be slowly and carefully separated from each other without any damage. This detachment is reversible: If the pH value is raised again, making the solution less acidic, the gel and “brush” stick to each other once again. This cycle can be repeated many times by simply changing the pH value.

Possible applications for such “smart” surface pairs include microelectromagnetic components (actuators), components for microfluidic systems, or carriers for pharmacological agents that could release their cargo under specific physiological conditions.

Jennifer Beal | alfa
Further information:
http://pressroom.angewandte.org

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>