Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated tailgating cuts pollution

16.07.2007
Close driving reduces drag, saves fuel

An automated way of allowing cars to drive much closer to each other in heavy moving traffic, so-called platooning, could cut congestion, save fuel and cut greenhouse gas emissions, according to research published today in Inderscience's International Journal of the Environment and Pollution.

As populations grow and the number of vehicles on the roads in cities and motorways across Europe, North America and the developing world, rises, traditional ways of tackling the problem, such as simply building more roads or improving public transport are becoming less and less effective. "Automated highway systems are one of the many approaches that have been suggested to tackle the problems," says Mitra.

Traffic is a growing problem across the globe with the number of vehicles on the on the roads in Britain alone having risen from 26 million to almost 33 million in the last decade and that number set to rise by 25% over the next ten years. The problem is burgeoning in areas of enormous economic growth, such as China and India where countless new vehicles are pulling out and entering the traffic flow on newly built roads. With all that new traffic, of course, comes more pollution, and the need for ever more innovative approaches to tackling it.

Driving a lot closer than a safe stopping distance from the vehicle in front is not a sensible option. Learner drivers are taught from their first lesson on the road to keep their distance. According to Debojyoti Mitra and Asis Mazumdar in the Department of Mechanical Engineering at Jadavpur University, Kolkata, India, in heavy traffic these safe distances mean more tailgate turbulence and increased drag on individual vehicles, which means lower fuel efficiency.

The researchers investigated the drag on platoons of four vehicles in Jadavpur University's vehicle test wind tunnel.

Cars moving in the same direction separated by a meter or so would reduce drag and so save fuel. Adding sensors and safety controls that allow vehicles to drive at such a small separation is possible. Now, Mitr and Mazumdar explain how car manufacturers and transport policy might work to allow such a platooning system to operate.

"The leading car in the platoon experiences the highest drag as you would expect but no more than if it were driving alone," explains Mitra, "The second car has a much lower drag coefficient than the first car in a two-car platoon. The middle car experiences the lowest drag in a three-car platoon and the third car in the platoon, starting from the front, experiences the least drag in a four-car platoon."

Reduced drag not only means lower average fuel consumption for a platoon, but also reduces the overall road noise heard by drivers and other road users.

Asis Mazumdar | EurekAlert!
Further information:
http://www.inderscience.com/

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>