Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated tailgating cuts pollution

16.07.2007
Close driving reduces drag, saves fuel

An automated way of allowing cars to drive much closer to each other in heavy moving traffic, so-called platooning, could cut congestion, save fuel and cut greenhouse gas emissions, according to research published today in Inderscience's International Journal of the Environment and Pollution.

As populations grow and the number of vehicles on the roads in cities and motorways across Europe, North America and the developing world, rises, traditional ways of tackling the problem, such as simply building more roads or improving public transport are becoming less and less effective. "Automated highway systems are one of the many approaches that have been suggested to tackle the problems," says Mitra.

Traffic is a growing problem across the globe with the number of vehicles on the on the roads in Britain alone having risen from 26 million to almost 33 million in the last decade and that number set to rise by 25% over the next ten years. The problem is burgeoning in areas of enormous economic growth, such as China and India where countless new vehicles are pulling out and entering the traffic flow on newly built roads. With all that new traffic, of course, comes more pollution, and the need for ever more innovative approaches to tackling it.

Driving a lot closer than a safe stopping distance from the vehicle in front is not a sensible option. Learner drivers are taught from their first lesson on the road to keep their distance. According to Debojyoti Mitra and Asis Mazumdar in the Department of Mechanical Engineering at Jadavpur University, Kolkata, India, in heavy traffic these safe distances mean more tailgate turbulence and increased drag on individual vehicles, which means lower fuel efficiency.

The researchers investigated the drag on platoons of four vehicles in Jadavpur University's vehicle test wind tunnel.

Cars moving in the same direction separated by a meter or so would reduce drag and so save fuel. Adding sensors and safety controls that allow vehicles to drive at such a small separation is possible. Now, Mitr and Mazumdar explain how car manufacturers and transport policy might work to allow such a platooning system to operate.

"The leading car in the platoon experiences the highest drag as you would expect but no more than if it were driving alone," explains Mitra, "The second car has a much lower drag coefficient than the first car in a two-car platoon. The middle car experiences the lowest drag in a three-car platoon and the third car in the platoon, starting from the front, experiences the least drag in a four-car platoon."

Reduced drag not only means lower average fuel consumption for a platoon, but also reduces the overall road noise heard by drivers and other road users.

Asis Mazumdar | EurekAlert!
Further information:
http://www.inderscience.com/

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>