Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailgating platoons could cut pollution

13.07.2007
An automated way of allowing cars to drive much closer to each other in heavy moving traffic, so-called platooning, could cut congestion, save fuel and cut greenhouse gas emissions, according to research published today in Inderscience's International Journal of the Environment and Pollution.

As populations grow and the number of vehicles on the roads in cities and motorways across Europe, North America and the developing world, rises, traditional ways of tackling the problem, such as simply building more roads or improving public transport are becoming less and less effective. "Automated highway systems are one of the many approaches that have been suggested to tackle the problems," says Mitra.

Traffic is a growing problem across the globe with the number of vehicles on the on the roads in Britain alone having risen from 26 million to almost 33 million in the last decade and that number set to rise by 25% over the next ten years. The problem is burgeoning in areas of enormous economic growth, such as China and India where countless new vehicles are pulling out and entering the traffic flow on newly built roads. With all that new traffic, of course, comes more pollution, and the need for ever more innovative approaches to tackling it.

Driving a lot closer than a safe stopping distance from the vehicle in front is not a sensible option. Learner drivers are taught from their first lesson on the road to keep their distance. According to Debojyoti Mitra and Asis Mazumdar in the Department of Mechanical Engineering at Jadavpur University, Kolkata, India, in heavy traffic these safe distances mean more tailgate turbulence and increased drag on individual vehicles, which means lower fuel efficiency.

The researchers investigated the drag on platoons of four vehicles in Jadavpur University's vehicle test wind tunnel.

Cars moving in the same direction separated by a metre or so would reduce drag and so save fuel. Adding sensors and safety controls that allow vehicles to drive at such a small separation is possible. Now, Mitr and Mazumdar explain how car manufacturers and transport policy might work to allow such a platooning system to operate.

"The leading car in the platoon experiences the highest drag as you would expect but no more than if it were driving alone," explains Mitra, "The second car has a much lower drag coefficient than the first car in a two-car platoon. The middle car experiences the lowest drag in a three-car platoon and the third car in the platoon, starting from the front, experiences the least drag in a four-car platoon."

Reduced drag not only means lower average fuel consumption for a platoon, but also reduces the overall road noise heard by drivers and other road users.

Jim Corlett | alfa
Further information:
http://www.sciencebase.com

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>