Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tailgating platoons could cut pollution

An automated way of allowing cars to drive much closer to each other in heavy moving traffic, so-called platooning, could cut congestion, save fuel and cut greenhouse gas emissions, according to research published today in Inderscience's International Journal of the Environment and Pollution.

As populations grow and the number of vehicles on the roads in cities and motorways across Europe, North America and the developing world, rises, traditional ways of tackling the problem, such as simply building more roads or improving public transport are becoming less and less effective. "Automated highway systems are one of the many approaches that have been suggested to tackle the problems," says Mitra.

Traffic is a growing problem across the globe with the number of vehicles on the on the roads in Britain alone having risen from 26 million to almost 33 million in the last decade and that number set to rise by 25% over the next ten years. The problem is burgeoning in areas of enormous economic growth, such as China and India where countless new vehicles are pulling out and entering the traffic flow on newly built roads. With all that new traffic, of course, comes more pollution, and the need for ever more innovative approaches to tackling it.

Driving a lot closer than a safe stopping distance from the vehicle in front is not a sensible option. Learner drivers are taught from their first lesson on the road to keep their distance. According to Debojyoti Mitra and Asis Mazumdar in the Department of Mechanical Engineering at Jadavpur University, Kolkata, India, in heavy traffic these safe distances mean more tailgate turbulence and increased drag on individual vehicles, which means lower fuel efficiency.

The researchers investigated the drag on platoons of four vehicles in Jadavpur University's vehicle test wind tunnel.

Cars moving in the same direction separated by a metre or so would reduce drag and so save fuel. Adding sensors and safety controls that allow vehicles to drive at such a small separation is possible. Now, Mitr and Mazumdar explain how car manufacturers and transport policy might work to allow such a platooning system to operate.

"The leading car in the platoon experiences the highest drag as you would expect but no more than if it were driving alone," explains Mitra, "The second car has a much lower drag coefficient than the first car in a two-car platoon. The middle car experiences the lowest drag in a three-car platoon and the third car in the platoon, starting from the front, experiences the least drag in a four-car platoon."

Reduced drag not only means lower average fuel consumption for a platoon, but also reduces the overall road noise heard by drivers and other road users.

Jim Corlett | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>