Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of Hemlocks Will Affect Water Dynamics in Southern Appalachian Forests

11.07.2007
Forest Service (FS) research has provided the first estimates on the impact the loss of eastern hemlock will have on the water dynamics of the southern Appalachian mountains. In the June 2007 issue of Ecological Applications, researchers Chelcy Ford and Jim Vose from the FS Southern Research Station (SRS) Coweeta Hydrologic Laboratory present findings on eastern hemlock rates of transpiration (the amount of soil water taken up by trees) from a 2-year study in western North Carolina.

Eastern hemlock, a keystone species in the streamside forests in the southern Appalachian region, is already experiencing widespread decline and mortality and may be decimated by the hemlock woolly adelgid (a tiny nonnative insect) within the next 10 years. As a native evergreen capable of maintaining year-round transpiration rates, eastern hemlock plays an important role in the ecology and hydrology of mountain ecosystems. Hemlocks provide critical habitat for birds and other animals; their shade helps maintain the cool water temperatures required by trout and other aquatic organisms in mountain streams.

"No other native evergreen in the southern Appalachians will likely fill the ecohydrological role of eastern hemlock if widespread mortality occurs," says Ford, ecologist with the Otto, NC unit where Vose is project leader. "With the loss of this species, we predict changes to streamflow, streamside forest structure, and soil moisture that will have to be addressed by land managers."

Hemlock woolly adelgids attach themselves to the base of the needles of the eastern hemlock, feeding on carbon fixed by the trees, slowing growth and causing the needles to drop. Needle loss causes the crown of the tree to thin and dieback in branches; in a surprisingly short time - usually 5 to 10 years - the tree fades away and dies.

To estimate the impact the loss of hemlock will have on the water balance, the researchers measured transpiration rates over a range of tree sizes for 2 years. "We found quite substantial transpiration rates for individual hemlocks, with large trees transpiring as much as 49 gallons of water a day." says Ford.

The study showed that eastern hemlock plays two distinct ecohydrological roles in the southern Appalachian region: one as an evergreen tree with relatively stable water use throughout the year; the other as a streamside tree with high rates of water use in the spring. If hemlock is lost, there is probably no other native tree species that can fill these roles.

"As hemlock woolly adelgid infestations increase, we expect to see at least short term reductions in forest transpiration rates," says Ford. "For southern Appalachian forests specifically, we estimate that eastern hemlock mortality could reduce annual forest transpiration by 10 percent, and winter and spring transpiration by 30 percent. We expect this will increase soil moisture and alter both the amount and timing of stream flow. The duration of these changes will depend on how other vegetation responds to the loss of hemlock."

Read the full text of the article at http://www.esajournals.org/perlserv/?request=get-document&doi=10.1890%2F06-0027

Chelcy Ford | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>