Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Loss of Hemlocks Will Affect Water Dynamics in Southern Appalachian Forests

Forest Service (FS) research has provided the first estimates on the impact the loss of eastern hemlock will have on the water dynamics of the southern Appalachian mountains. In the June 2007 issue of Ecological Applications, researchers Chelcy Ford and Jim Vose from the FS Southern Research Station (SRS) Coweeta Hydrologic Laboratory present findings on eastern hemlock rates of transpiration (the amount of soil water taken up by trees) from a 2-year study in western North Carolina.

Eastern hemlock, a keystone species in the streamside forests in the southern Appalachian region, is already experiencing widespread decline and mortality and may be decimated by the hemlock woolly adelgid (a tiny nonnative insect) within the next 10 years. As a native evergreen capable of maintaining year-round transpiration rates, eastern hemlock plays an important role in the ecology and hydrology of mountain ecosystems. Hemlocks provide critical habitat for birds and other animals; their shade helps maintain the cool water temperatures required by trout and other aquatic organisms in mountain streams.

"No other native evergreen in the southern Appalachians will likely fill the ecohydrological role of eastern hemlock if widespread mortality occurs," says Ford, ecologist with the Otto, NC unit where Vose is project leader. "With the loss of this species, we predict changes to streamflow, streamside forest structure, and soil moisture that will have to be addressed by land managers."

Hemlock woolly adelgids attach themselves to the base of the needles of the eastern hemlock, feeding on carbon fixed by the trees, slowing growth and causing the needles to drop. Needle loss causes the crown of the tree to thin and dieback in branches; in a surprisingly short time - usually 5 to 10 years - the tree fades away and dies.

To estimate the impact the loss of hemlock will have on the water balance, the researchers measured transpiration rates over a range of tree sizes for 2 years. "We found quite substantial transpiration rates for individual hemlocks, with large trees transpiring as much as 49 gallons of water a day." says Ford.

The study showed that eastern hemlock plays two distinct ecohydrological roles in the southern Appalachian region: one as an evergreen tree with relatively stable water use throughout the year; the other as a streamside tree with high rates of water use in the spring. If hemlock is lost, there is probably no other native tree species that can fill these roles.

"As hemlock woolly adelgid infestations increase, we expect to see at least short term reductions in forest transpiration rates," says Ford. "For southern Appalachian forests specifically, we estimate that eastern hemlock mortality could reduce annual forest transpiration by 10 percent, and winter and spring transpiration by 30 percent. We expect this will increase soil moisture and alter both the amount and timing of stream flow. The duration of these changes will depend on how other vegetation responds to the loss of hemlock."

Read the full text of the article at

Chelcy Ford | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>