Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brightly coloured birds most affected by Chernobyl radiation

Brightly coloured birds are among the species most adversely affected by the high levels of radiation around the Chernobyl nuclear plant, ecologists have discovered. The findings - published online in the British Ecological Society's Journal of Applied Ecology - help explain why some species are harder hit by ionising radiation than others.

Dr Anders Møller of the Université Pierre et Marie Curie and Professor Timothy Mousseau of the University of South Carolina examined 1,570 birds from 57 different species in the forests around Chernobyl at varying distances from the reactor. They found that populations of four groups of birds - those whose red, yellow and orange plumage is based on carotenoids, those that laid the biggest eggs, and those that migrated or dispersed the furthest - declined more than other species.

The intriguing results centre on the role of antioxidants - chemicals that help protect living organisms from the damaging effects of free radicals. Certain activities use up large amounts of antioxidants. These include producing carotenoid-based pigments for feathers, migrating long distances and laying large eggs (birds lay down antioxidants in their eggs, and will deposit larger amounts of antioxidants in larger eggs). Møller and Mousseau hypothesized that because they had fewer antioxidants left to mop up dangerous free radicals, these birds would most adversely affected by exposure to radiation around Chernobyl.

According to Møller and Mousseau: “We found that bird species differed in their response to radiation from Chernobyl. The strongest declines in population density with radiation level were found for species with carotenoid-based plumage, long-distance migration and dispersal, and large eggs for their body size. All four of these factors are associated with antioxidant levels, suggesting that reduced antioxidant levels may cause population declines when species are exposed to radiation.”

Among the brightly coloured species most affected were orioles, blackbirds and blue tits, while drab species like tree pipits, coal tits and chaffinches were much less affected. Long distance migrants or dispersers that were most affected included quails, orioles, hoopoes, blackbirds and robins, while non-migrant or short-dispersing species like great tits, coal tits and song thrushes were much less affected.

“This is the first study linking the effects of radiation on population size of different species to antioxidant defence. Although all species must cope with the potentially detrimental effects of free radicals, because of their use of antioxidants, certain species are predisposed to suffer most from these negative effects,” they say.

The results could have important implications for other animals elsewhere. According to Møller and Mousseau: “There is large variation in natural levels of radioactivity due to differences in the abundance of radioactive isotopes, mainly in mountain regions where the underlying rock reaches the surface. There are no studies of the biological consequences of such variation in natural levels of radioactivity, but we suggest that some of the consequences can be predicted from the present study.”

A P Møller and T A Mousseau (2007). Determinants of interspecific variation in population declines of birds from exposure to radiation at Chernobyl. Journal of Applied Ecology, doi: 10.1111/j.1365-2664.2007.01353.x is published online on 11 July 2007.

Becky Allen | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>