Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brightly coloured birds most affected by Chernobyl radiation

11.07.2007
Brightly coloured birds are among the species most adversely affected by the high levels of radiation around the Chernobyl nuclear plant, ecologists have discovered. The findings - published online in the British Ecological Society's Journal of Applied Ecology - help explain why some species are harder hit by ionising radiation than others.

Dr Anders Møller of the Université Pierre et Marie Curie and Professor Timothy Mousseau of the University of South Carolina examined 1,570 birds from 57 different species in the forests around Chernobyl at varying distances from the reactor. They found that populations of four groups of birds - those whose red, yellow and orange plumage is based on carotenoids, those that laid the biggest eggs, and those that migrated or dispersed the furthest - declined more than other species.

The intriguing results centre on the role of antioxidants - chemicals that help protect living organisms from the damaging effects of free radicals. Certain activities use up large amounts of antioxidants. These include producing carotenoid-based pigments for feathers, migrating long distances and laying large eggs (birds lay down antioxidants in their eggs, and will deposit larger amounts of antioxidants in larger eggs). Møller and Mousseau hypothesized that because they had fewer antioxidants left to mop up dangerous free radicals, these birds would most adversely affected by exposure to radiation around Chernobyl.

According to Møller and Mousseau: “We found that bird species differed in their response to radiation from Chernobyl. The strongest declines in population density with radiation level were found for species with carotenoid-based plumage, long-distance migration and dispersal, and large eggs for their body size. All four of these factors are associated with antioxidant levels, suggesting that reduced antioxidant levels may cause population declines when species are exposed to radiation.”

Among the brightly coloured species most affected were orioles, blackbirds and blue tits, while drab species like tree pipits, coal tits and chaffinches were much less affected. Long distance migrants or dispersers that were most affected included quails, orioles, hoopoes, blackbirds and robins, while non-migrant or short-dispersing species like great tits, coal tits and song thrushes were much less affected.

“This is the first study linking the effects of radiation on population size of different species to antioxidant defence. Although all species must cope with the potentially detrimental effects of free radicals, because of their use of antioxidants, certain species are predisposed to suffer most from these negative effects,” they say.

The results could have important implications for other animals elsewhere. According to Møller and Mousseau: “There is large variation in natural levels of radioactivity due to differences in the abundance of radioactive isotopes, mainly in mountain regions where the underlying rock reaches the surface. There are no studies of the biological consequences of such variation in natural levels of radioactivity, but we suggest that some of the consequences can be predicted from the present study.”

A P Møller and T A Mousseau (2007). Determinants of interspecific variation in population declines of birds from exposure to radiation at Chernobyl. Journal of Applied Ecology, doi: 10.1111/j.1365-2664.2007.01353.x is published online on 11 July 2007.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>