Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Readies Mars Lander for August Launch to Icy Site

10.07.2007
NASA's next Mars mission will look beneath a frigid arctic landscape for conditions favorable to past or present life.

Instead of roving to hills or craters, NASA's Phoenix Mars Lander will claw down into the icy soil of the Red Planet's northern plains. The robot will investigate whether frozen water near the Martian surface might periodically melt enough to sustain a livable environment for microbes. To accomplish that and other key goals, Phoenix will carry a set of advanced research tools never before used on Mars.

First, however, it must launch from Florida during a three-week period beginning Aug. 3, then survive a risky descent and landing on Mars next spring.

"Our 'follow the water' strategy for exploring Mars has yielded a string of dramatic discoveries in recent years about the history of water on a planet where similarities with Earth were much greater in the past than they are today," said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters, Washington. "Phoenix will complement our strategic exploration of Mars by being our first attempt to actually touch and analyze Martian water -- water in the form of buried ice."

NASA's Mars Odyssey orbiter found evidence in 2002 to support theories that large areas of Mars, including the arctic plains, have water ice within an arm's reach of the surface.

"Phoenix has been designed to examine the history of the ice by measuring how liquid water has modified the chemistry and mineralogy of the soil," said Peter Smith, the Phoenix principal investigator at The University of Arizona in Tucson.

"In addition, our instruments can assess whether this polar environment is a habitable zone for primitive microbes. To complete the scientific characterization of the site, Phoenix will monitor polar weather and the interaction of the atmosphere with the surface."

With its flanking solar panels unfurled, the lander is about 18 feet wide and 5 feet long. A robotic arm 7.7 feet long will dig to the icy layer, which is expected to lie within a few inches of the surface. A camera and conductivity probe on the arm will examine soil and any ice there. The arm will lift samples to two instruments on the lander's deck. One will use heating to check for volatile substances, such as water and carbon-based chemicals that are essential building blocks for life. The other will analyze the chemistry of the soil.

A meteorology station, with a laser for assessing water and dust in the atmosphere, will monitor weather throughout the planned three-month mission during Martian spring and summer. The robot's toolkit also includes a mast-mounted stereo camera to survey the landing site, a descent camera to see the site in broader context and two microscopes.

For the final stage of landing, Phoenix is equipped with a pulsed thruster method of deceleration. The system uses an ultra-lightweight landing system that allows the spacecraft to carry a heavier scientific payload. Like past Mars missions, Phoenix uses a heat shield to slow its high-speed entry, followed by a supersonic parachute that further reduces its speed to about 135 mph. The lander then separates from the parachute and fires pulsed descent rocket engines to slow to about 5.5 mph before landing on its three legs.

"Landing safely on Mars is difficult no matter what method you use," said Barry Goldstein, the project manager for Phoenix at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Our team has been testing the system relentlessly since 2003 to identify and address whatever vulnerabilities may exist."

Researchers evaluating possible landing sites have used observations from Mars orbiters to find the safest places where the mission's goals can be met. The leading candidate site is a broad valley with few boulders at a latitude equivalent to northern Alaska.

The UA's Smith leads the Phoenix mission, with project management at the Jet Propulsion Laboratory and the development partnership located at Lockheed Martin, Denver. International contributions are provided by the Canadian Space Agency, the University of Neuchatel, Switzerland, the University of Copenhagen, Denmark, the Max Planck Institute, Germany and the Finnish Meteorological Institute. Additional information on the Phoenix mission is available online at: http://phoenix.lpl.arizona.edu or http://www.nasa.gov/phoenix.

Additional information on NASA's Mars program is available online at: http://www.nasa.gov/mars.

Sara Hammond | University of Arizona
Further information:
http://www.nasa.gov/mars
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>