Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Readies Mars Lander for August Launch to Icy Site

10.07.2007
NASA's next Mars mission will look beneath a frigid arctic landscape for conditions favorable to past or present life.

Instead of roving to hills or craters, NASA's Phoenix Mars Lander will claw down into the icy soil of the Red Planet's northern plains. The robot will investigate whether frozen water near the Martian surface might periodically melt enough to sustain a livable environment for microbes. To accomplish that and other key goals, Phoenix will carry a set of advanced research tools never before used on Mars.

First, however, it must launch from Florida during a three-week period beginning Aug. 3, then survive a risky descent and landing on Mars next spring.

"Our 'follow the water' strategy for exploring Mars has yielded a string of dramatic discoveries in recent years about the history of water on a planet where similarities with Earth were much greater in the past than they are today," said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters, Washington. "Phoenix will complement our strategic exploration of Mars by being our first attempt to actually touch and analyze Martian water -- water in the form of buried ice."

NASA's Mars Odyssey orbiter found evidence in 2002 to support theories that large areas of Mars, including the arctic plains, have water ice within an arm's reach of the surface.

"Phoenix has been designed to examine the history of the ice by measuring how liquid water has modified the chemistry and mineralogy of the soil," said Peter Smith, the Phoenix principal investigator at The University of Arizona in Tucson.

"In addition, our instruments can assess whether this polar environment is a habitable zone for primitive microbes. To complete the scientific characterization of the site, Phoenix will monitor polar weather and the interaction of the atmosphere with the surface."

With its flanking solar panels unfurled, the lander is about 18 feet wide and 5 feet long. A robotic arm 7.7 feet long will dig to the icy layer, which is expected to lie within a few inches of the surface. A camera and conductivity probe on the arm will examine soil and any ice there. The arm will lift samples to two instruments on the lander's deck. One will use heating to check for volatile substances, such as water and carbon-based chemicals that are essential building blocks for life. The other will analyze the chemistry of the soil.

A meteorology station, with a laser for assessing water and dust in the atmosphere, will monitor weather throughout the planned three-month mission during Martian spring and summer. The robot's toolkit also includes a mast-mounted stereo camera to survey the landing site, a descent camera to see the site in broader context and two microscopes.

For the final stage of landing, Phoenix is equipped with a pulsed thruster method of deceleration. The system uses an ultra-lightweight landing system that allows the spacecraft to carry a heavier scientific payload. Like past Mars missions, Phoenix uses a heat shield to slow its high-speed entry, followed by a supersonic parachute that further reduces its speed to about 135 mph. The lander then separates from the parachute and fires pulsed descent rocket engines to slow to about 5.5 mph before landing on its three legs.

"Landing safely on Mars is difficult no matter what method you use," said Barry Goldstein, the project manager for Phoenix at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Our team has been testing the system relentlessly since 2003 to identify and address whatever vulnerabilities may exist."

Researchers evaluating possible landing sites have used observations from Mars orbiters to find the safest places where the mission's goals can be met. The leading candidate site is a broad valley with few boulders at a latitude equivalent to northern Alaska.

The UA's Smith leads the Phoenix mission, with project management at the Jet Propulsion Laboratory and the development partnership located at Lockheed Martin, Denver. International contributions are provided by the Canadian Space Agency, the University of Neuchatel, Switzerland, the University of Copenhagen, Denmark, the Max Planck Institute, Germany and the Finnish Meteorological Institute. Additional information on the Phoenix mission is available online at: http://phoenix.lpl.arizona.edu or http://www.nasa.gov/phoenix.

Additional information on NASA's Mars program is available online at: http://www.nasa.gov/mars.

Sara Hammond | University of Arizona
Further information:
http://www.nasa.gov/mars
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Magnesium magnificent for plasmonic applications

23.05.2018 | Materials Sciences

Tunable diamond string may hold key to quantum memory

23.05.2018 | Physics and Astronomy

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>