Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Sundried tide" — silent, natural disaster

05.07.2007
Australian researchers have studied and documented the effect of the "sundried tide", a force of nature that can silently wipe out coral reefs.

Their analyses have revealed for the first time that these are highly predictable events that can seriously impact the state of coral reefs at a time when they are preparing for the stresses of summer.

In a paper published in scientific journal Marine Biology, Dr Ken Anthony and Dr Ailsa Kerswell, of the ARC Centre of Excellence for Coral Reef Studies (CoECRS) have revealed that extreme low tides on clear sunny days can lead to widespread damage of coastal coral colonies.

"Really low tides, where the local sea level gets to its extreme low for the year, can occur at different times of the day," UQ's Dr Anthony said.

"In years where this occurs during the middle of the day when the sunlight is at its most intense and the reefs are almost fully exposed, there is a real risk of severe coral stress and death in the shallow reef zone."

Just like cyclones and other natural disasters, these severe ‘sun-dry tides' rarely occurred since they relied on the alignment of numerous natural extremes, he said.

However, when these factors all aligned, by a combination of sun, moon and chance weather, an extreme event occurred which could leave coral colonies bleached and devastated.

One such event occurred in September 2005 while Dr Anthony and Dr Kerswell were taking JCU students on a field trip to Orpheus Island off the Queensland coast.

“While doing some field work we noticed that all the corals in the area were about to die, so we took the opportunity to record the event,” Dr Kerswell said.

Their observations led Dr Anthony and Dr Kerswell to investigate the mysterious coral deaths on Orpheus Island — a study which would reveal that what they had witnessed was a rare event, the extent of which had never previously been recorded on the Great Barrier Reef .

“At first we thought it was a major outbreak of disease," Dr Kerswell said.

"We collected samples and took hundreds of photos and sent a series off to colleagues to be analysed. The response was that it was not a disease, but something else.

“[So] we looked back through hourly records of tidal patterns over the previous eight years and combined it with data on solar records and models."

Dr Anthony said the researchers aligned what the tide would do with the sun and weather patterns and ran an analysis of the risk of corals being out of the water and exposed to the sun.

During September 2005 Dr Anthony, Dr Kerswell and the students were present the week following a rare extremely low tide during which the sun had been shining from a clear sky.

These "natural disasters" occur silently but can devastate the tidal zone. From past records Dr Anthony estimated that the September 2005 event was the worst in the eight-year record.

However, the "sundried tides" could also be anticipated.

"These events are highly predictable," Dr Anthony said.

"We can go into the weather reports, align them with tidal charts and predict the times of greatest risk.

"The high-risk time of year is July–October, when corals are building up resources for spawning and preparing for summer stressors such as thermal bleaching."

Since studying the cause and impacts of these major events, Dr Anthony hopes that their predictable nature will lead to improved warning systems and better models for predicting stress and mortality in corals.

Although predictable and natural, "sundried tides" were unavoidable and compounded the stresses already felt by corals due to climate change and human impacts, he said.

"However, if we better understand the timing and severity of natural stressors on reefs, we will be able to better predict the risks of human-induced stressors, and hopefully better manage for healthy reefs," he said.

Paper:
Anthony, K and Kerswell, A (2007). Coral mortality following extreme low tides and high solar radiation. Marine Biology 151(5): 1623-1631.

Link to full text or pdf

More information:
Dr Ken Anthony, CoECRS & UQ, 07 3365 9154, 0427 177 290

Dr. Ken Anthony | EurekAlert!
Further information:
http://www.coralcoe.org.au/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>