Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Sundried tide" — silent, natural disaster

05.07.2007
Australian researchers have studied and documented the effect of the "sundried tide", a force of nature that can silently wipe out coral reefs.

Their analyses have revealed for the first time that these are highly predictable events that can seriously impact the state of coral reefs at a time when they are preparing for the stresses of summer.

In a paper published in scientific journal Marine Biology, Dr Ken Anthony and Dr Ailsa Kerswell, of the ARC Centre of Excellence for Coral Reef Studies (CoECRS) have revealed that extreme low tides on clear sunny days can lead to widespread damage of coastal coral colonies.

"Really low tides, where the local sea level gets to its extreme low for the year, can occur at different times of the day," UQ's Dr Anthony said.

"In years where this occurs during the middle of the day when the sunlight is at its most intense and the reefs are almost fully exposed, there is a real risk of severe coral stress and death in the shallow reef zone."

Just like cyclones and other natural disasters, these severe ‘sun-dry tides' rarely occurred since they relied on the alignment of numerous natural extremes, he said.

However, when these factors all aligned, by a combination of sun, moon and chance weather, an extreme event occurred which could leave coral colonies bleached and devastated.

One such event occurred in September 2005 while Dr Anthony and Dr Kerswell were taking JCU students on a field trip to Orpheus Island off the Queensland coast.

“While doing some field work we noticed that all the corals in the area were about to die, so we took the opportunity to record the event,” Dr Kerswell said.

Their observations led Dr Anthony and Dr Kerswell to investigate the mysterious coral deaths on Orpheus Island — a study which would reveal that what they had witnessed was a rare event, the extent of which had never previously been recorded on the Great Barrier Reef .

“At first we thought it was a major outbreak of disease," Dr Kerswell said.

"We collected samples and took hundreds of photos and sent a series off to colleagues to be analysed. The response was that it was not a disease, but something else.

“[So] we looked back through hourly records of tidal patterns over the previous eight years and combined it with data on solar records and models."

Dr Anthony said the researchers aligned what the tide would do with the sun and weather patterns and ran an analysis of the risk of corals being out of the water and exposed to the sun.

During September 2005 Dr Anthony, Dr Kerswell and the students were present the week following a rare extremely low tide during which the sun had been shining from a clear sky.

These "natural disasters" occur silently but can devastate the tidal zone. From past records Dr Anthony estimated that the September 2005 event was the worst in the eight-year record.

However, the "sundried tides" could also be anticipated.

"These events are highly predictable," Dr Anthony said.

"We can go into the weather reports, align them with tidal charts and predict the times of greatest risk.

"The high-risk time of year is July–October, when corals are building up resources for spawning and preparing for summer stressors such as thermal bleaching."

Since studying the cause and impacts of these major events, Dr Anthony hopes that their predictable nature will lead to improved warning systems and better models for predicting stress and mortality in corals.

Although predictable and natural, "sundried tides" were unavoidable and compounded the stresses already felt by corals due to climate change and human impacts, he said.

"However, if we better understand the timing and severity of natural stressors on reefs, we will be able to better predict the risks of human-induced stressors, and hopefully better manage for healthy reefs," he said.

Paper:
Anthony, K and Kerswell, A (2007). Coral mortality following extreme low tides and high solar radiation. Marine Biology 151(5): 1623-1631.

Link to full text or pdf

More information:
Dr Ken Anthony, CoECRS & UQ, 07 3365 9154, 0427 177 290

Dr. Ken Anthony | EurekAlert!
Further information:
http://www.coralcoe.org.au/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>