Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Investigating Life in Extreme Environments report gives hints on facts of life

From the deepest seafloor to the highest mountain, from the hottest region to the cold Antarctic plateau, environments labelled as extreme are numerous on Earth and they present a wide variety of features and characteristics.

Investigating life processes in extreme environments not only can provide hints on how life first appeared and survived on Earth (as early earth was an extreme environment) but it can also give indication for the search for life on other planets.

To examine these issues and other matters the European Science Foundation (ESF) has published a 58-page report Investigating Life in Extreme Environments - A European Perspective. Among other issues, the report has stated how global changes in the recent decades have turned some environments setting into becoming "extreme" conditions for the normal ecosystems (e.g. acidification of the oceans). Therefore the understanding of tolerance/adaptation/non-adaptation to extreme conditions and ecosystem functioning are able to help predicting the impact of global change on biodiversity.

This report is resulted from an ESF inter-committee initiative involving the Marine Board (MB-ESF), the European Polar Board (EPB), the European Space Science Committee (ESSC), the Life Earth and Environmental Sciences Standing Committee (LESC), the Standing Committee for Humanities (SCH) and the European Medical Research Councils (EMRC). This interdisciplinary initiative considered all types of life forms (from microbes to humans) evolving in a wide range of extreme environments (from deep sea to acidic rivers, polar regions or planetary bodies).

A series of recommendations were made from a large-scale interdisciplinary workshop (128 participants) organised in November 2005 with an additional workshop organised in March 2006. They have identified interdisciplinary (listed below) and disciplinary research priorities.


Cross-cutting Scientific Recommendations

* Identify and agree on i) model organisms in different phyla (a group that has genetic relationship) and for different extreme environments; and ii) model extreme environments

* Favour an ecosystem-based multidisciplinary approach when considering scientific activities in extreme environments.

* Foster the use of Molecular Structural Biology and Genomics when considering life processes in extreme environments

Cross-cutting Technology Recommendations

* Laboratory simulation techniques and facilities (e.g. microcosms) should be wider developed and made available to the scientific community.

* Develop of in-situ sampling, measurement and monitoring technologies. The assessment and use of existing techniques is also recommended.

* Adopt a common approach (specific to research activities in extreme environments) on technology requirements, availability and development.

Structuring and Networking the Science community

* Favorise interdisciplinarity and multidisciplinarity approaches between scientific domains and between the technological and scientific spheres.

* Create as soon as possible an overarching interdisciplinary group of experts to define the necessary actions to build a critical European mass in the field of "Investigating Life in Extreme Environments"

* Improve the information exchange, coordination and networking of the European community involved in scientific activities in extreme environments.

The report also include recommendations specific to i) Microbial life, ii) Life Strategy of plants, iii) Life Strategy of animals and iv) Human adaptation.

Thomas Lau | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>