Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ocean surface, a whole world in motion

02.07.2007
Technical advances over the past 50 years have allowed improved knowledge to be gained of the properties of sea water at great depths. Yet the first centimetres of the ocean remain its least well known part.

They are difficult to sample and study owing to the mixing the oceanographic vessel provokes between this superficial layer and the deeper strata of water. Nevertheless, a whole ecosystem exists within this layer, carrying numerous living organisms like bacteria, zooplankton and larger animals such as flying fish, which feed and reproduce in it.

Research usually focuses rather on the whole of the sunlit part of the ocean (the first 30 to 120 metres) where the phytoplankton elaborates organic matter (in primary production) thanks to chlorophyll – its green pigment - during photosynthesis. Through this process, the ocean proves to be capable of trapping the carbon dioxide from the atmosphere by incorporating it with the organic matter produced and storing it by sedimentation down towards the deep waters. This downward movement of carbon-carrying particles is the focus of great attention among oceanographers.

In this theoretical context, IRD scientists (1) advanced the hypothesis that part of this carbon flux would rise up instead of descend, feeding the surface fauna. These living beings and the organic particles they absorb are still little known as a whole and are designated as “floating biogenic material”. A physical ocean circulation model, coupled with a model reproducing the behaviour of the ecosystems, was used in order to obtain more accurate notions of the distribution of these particles present at the ocean surface and of their relationships with the food “hot spots”, first observed several years ago (2).

The simulation run showed that the distribution of the biogenic material does not follow that of the primary production that generates it. The surface-layer organisms with their associated organic matter are under the direct influence of the surface currents. These currents carry this floating material as far as the oceanic convergence zones, places where two water masses meet. These “fronts”, where the concentrations of biogenic material are up to 10 times higher than those of other marine regions, prove to be no richer in phytoplankton and chlorophyll than the surrounding waters. The surface layer of the convergence zones is a site of accumulation only for floating debris of marine life and the organisms that feed on it.

Such concentrations of floating biomass in the otherwise nutrient-poor ocean, with low productivity and little organic-matter, is like an oasis for fish in search of food. They help explain in particular why tuna fishing is carried out essentially near these fronts, a factor that had not hitherto been clearly elucidated.

Another finding was that the optical properties of this floating material were quite close to those of chlorophyll. Consequently, this biogenic material influences observation of the colour of the ocean in the same way as the green pigment. Its presence thus distorts calculation systems which use these satellite colour data to estimate the chlorophyll concentration and therefore that of the phytoplankton. The great quantities of chlorophyll apparently detected in the convergence zones could in reality correspond to the presence of floating debris. More accurate definition of the distribution of the chlorophyll and biogenic material that accumulate at the fronts could therefore lead to a better perception and use of ocean colour as an indicator of oceanic circulation and of the ecosystem’s biological and biogeochemical processes.

Further, the accumulation of microorganisms and floating debris might influence carbon dioxide (CO2) absorption by the ocean. In fact, the life forms of the ecosystem in the first centimetres of the water breath and produce CO2. The existence of an excess of carbon dioxide just under the surface could therefore call into question the assessment methods used for the quantifying the CO2 absorbed by the ocean.

A surface sampling device is currently being developed. This kind of tool is a prerequisite for studying this theme, highly important for understanding climatic phenomena and atmospheric carbon concentration, a key parameter in global warming. (3)

Celine Bezy– DIC

(1)This research work was conducted by the “Laboratoire d'océanographie et du climat: expérimentations et approches numériques (LOCEAN)”, which jointly involves scientists from the IRD, the CNRS, the Université Paris VI and MNHN.
(2)See scientific bulletin N° 190, December 2003, accessible on www.ird.fr/fr/actualites/fiches/2003/fiche190.htm

(3)This is the GRABISU programme, in turn part of the national programme LEFE-CYBER, one of the present priorities of which is to develop new techniques for sample-taking from the surface film of the ocean.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/2007/fas268.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>