Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bats and the rabies virus: first epidemiological and ecological data on the dynamics of infection

29.06.2007
Bats are one of the zoological groups attracting most interest around the world in terms of studying the epidemiology of rabies. However, the dynamics of the viral infection in these organisms remains poorly understood. A team from the UB and the Institut Pasteur in Paris has just reported, in the online journal PloS ONE, the first epidemiological, ecological and virological study with previously unpublished data on the transmission and development of rabies in these mammals.

The study is the result of twelve years of monitoring the dynamics of rabies virus infection (European bat lyssavirus subtype 1 - EBL1) in two wild bat (Myotis myotis) colonies in Spain. In total, the scientific data refer to the monitoring of over 1000 individuals from two colonies situated 35 km from one another. The authors of the article are the researchers Blanca Amengual, Marc López-Roig and Jordi Serra-Cobo, from the Department of Animal Biology at the UB and the Barcelona Science Park, and Hervé Bourhy, from the Institut Pasteur in Paris.

“Bats can end up eliminating the rabies virus. Unlike what occurs in terrestrial mammals the viral infection does not significantly increase mortality in the bat colony”, says Serra-Cobo, director of the research and member of the vertebrate biology group coordinated by Professor Jacint Nadal of the Faculty of Biology.

He also points out that “when the rabies virus infects a bat colony, this does not significantly affect survival. This is the first publication of a mathematical model that analyzes survival rates among bats in a natural colony affected by this infection”.

The immunological response of these mammals to the infection has raised new hopes in the search for new health strategies against this fatal viral disease, which is considered to be an emerging zoonosis that is spread widely across the world. In the article the authors describe the initial findings from the mathematical model, which they have been able to compare with the results observed in the colonies during the study period.

According to the study the entry of the virus into the colony triggers a powerful immune response. Serological analyses and blood cell fractions were used to determine different parameters of the immune response of bats to the rabies virus. The results suggest that in response to infection, bats are able to produce antibodies that can last for up to twelve months. Other novel findings of the study include an estimate of the basic rate of viral reproduction and the period during which a bat is able to infect other individuals, this being five days. These infectious periods, which are cyclical in nature, occur in intervals of 2.5 to 5 years. The results obtained are of enormous importance for public health as they show that the risk of transmission is very low in this species.

In 2002 the same scientific team reported another set of original findings in the field of virology: they were the first to detect the rabies virus in the blood of bats using molecular genetic techniques (nested RT-PCR), and this research was published in the journal Emerging Infectious Diseases of the Centres for Disease Control (CDC). This discovery received a highly favourable appraisal from the editors of Rabies Bulletin Europe, published by the World Health Organization (WHO).

The study was promoted and funded by the Department of Health and Consumer Affairs of the Government of the Balearic Islands, and received the backing of Spain’s Ministry of Health and Consumer Affairs.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>