The finding in the Arctic, where the effects of global warming are expected to be most severe, offers an “early warning” of things to come on the rest of the planet, according to the researchers.
“Despite uncertainties in the magnitude of expected global warming over the next century, one consistent feature of extant and projected changes is that Arctic environments are and will be exposed to the greatest warming,” said Dr. Toke T. Høye of the National Environmental Research Institute, University of Aarhus, Denmark. “Our study confirms what many people already think, that the seasons are changing and it is not just one or two warm years but a strong trend seen over a decade.”
To uncover the effects of warming, the researchers turned to phenology, the study of the timing of familiar signs of spring seen in plants, butterflies, birds, and other species. Shifts in phenology are considered one of the clearest and most rapid signals of biological response to rising temperatures, Høye explained.
Yet most long-term records of phenological events have come from much milder climes. For example, recent comprehensive studies have reported advancements of 2.5 days per decade for European plants and 5.1 days per decade across animals and plants globally.s
Using the most comprehensive data set available for the region, the researchers now document extremely rapid climate-induced advancement of flowering, emergence, and egg-laying in a wide array of High Arctic species. Indeed, they show that the flowering dates in six plant species, median emergence dates of twelve arthropod species, and clutch initiation dates in three species of birds have advanced, in some cases by over 30 days during the last decade. The average advancement across all time series was 14.5 days per decade.
“We were particularly surprised to see that the trends were so strong when considering that the entire summer is very short in the High Arctic—with just three to four months from snowmelt to freeze up at our Zackenberg study site in northeast Greenland,” Høye said.
They also found considerable variation in the response to climate change even within species, he added, with much stronger shifts in plants and animals living in areas where the snow melts later in the year. That variation could lead to particular problems by disrupting the complex web of species’ interactions, Høye said.
Erin Doonan | EurekAlert!
Further information:
http://www.current-biology.com
Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel
Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Physics and Astronomy
On the shape of the 'petal' for the dissipation curve
23.04.2018 | Physics and Astronomy
Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018
23.04.2018 | Trade Fair News