Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative subsea separation technology wins 2007 EUREKA environmental award

18.06.2007
Dutch and Norwegian project E! 3040 SUBSEA SEPARATOR has been presented with this year’s EUREKA Lillehammer Award for its outstanding environmental benefits. The award was handed over by Mr Einar BULL, Norwegian ambassador to Italy, at EUREKA’s High Level Group gala dinner in Rome.

This compact subsea processing equipment will ensure a better use of increasingly scarce resources and is set to improve the economics of offshore oil and gas production. The outcome has resulted in the world’s first subsea separating system for oil, water and sand. Supplied by FMC Technologies, it is to be installed in the Norwegian Statoil Tordis field in the North Sea in the third quarter of 2007. The technology was developed by Dutch project leader CDS Engineering in cooperation with partners Statoil and FMC Technologies.

“By using this technology, you can exploit an oilfield much deeper – so, for instance, you can recover five to 10% more from the original reserves, an enormous advantage,” explains Toine Hendriks, CDS Engineering’s senior process engineer. “It is also expected that this technology will facilitate new oil field developments in deeper and more remote areas, an advantage for the future as most of the easy accessible oil has already been produced. CDS, which is now an FMC Technologies subsidiary, was a small company and this was an expensive project as we literally had to build a 1:1 scale separator in our test lab. Without EUREKA, funding the project would have been difficult,” he added.

Separation equipment plays a crucial role in the oil and gas production process by splitting the wellstream, which may comprise of oil, gas, water and sand, into individual constituents.”By installing a full field subsea separation facility, Statoil expects to improve the Tordis field’s recovery factor from 49 to 55%,” explains Rune Mode Ramberg, Statoil’s subsea processing discipline adviser. Along with other upgrades to the field, the separation system will allow Statoil to extract roughly 35 million extra barrels of oil from the Tordis field. This is achieved by reducing the back pressure towards the Tordis field, by separating water and sand from the wellstream subsea, re-injecting water and sand in a separate well subsea, boosting the wellstream and reducing the receiving pressure at the topside production platform.

From an environmental aspect, less oil will be discharged into the sea. Every day, up to 100.000 barrels of produced water with some residual small oil droplets will instead be re-injected into a separate subsea well. If such oil discharges could be avoided ijn more offshore oilfields, the benefits will be considerable. This technology meets industry’s needs, too, as several European countries are striving to reduce such oil discharges. Moreover, with an ability to handle water and sand more efficiently, this separator will contribute to extending the life of oilfields and to making better use of invested material and capital.

Sally Horspool | alfa
Further information:
http://www.eureka.be/inaction/awards.do

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>