Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative subsea separation technology wins 2007 EUREKA environmental award

18.06.2007
Dutch and Norwegian project E! 3040 SUBSEA SEPARATOR has been presented with this year’s EUREKA Lillehammer Award for its outstanding environmental benefits. The award was handed over by Mr Einar BULL, Norwegian ambassador to Italy, at EUREKA’s High Level Group gala dinner in Rome.

This compact subsea processing equipment will ensure a better use of increasingly scarce resources and is set to improve the economics of offshore oil and gas production. The outcome has resulted in the world’s first subsea separating system for oil, water and sand. Supplied by FMC Technologies, it is to be installed in the Norwegian Statoil Tordis field in the North Sea in the third quarter of 2007. The technology was developed by Dutch project leader CDS Engineering in cooperation with partners Statoil and FMC Technologies.

“By using this technology, you can exploit an oilfield much deeper – so, for instance, you can recover five to 10% more from the original reserves, an enormous advantage,” explains Toine Hendriks, CDS Engineering’s senior process engineer. “It is also expected that this technology will facilitate new oil field developments in deeper and more remote areas, an advantage for the future as most of the easy accessible oil has already been produced. CDS, which is now an FMC Technologies subsidiary, was a small company and this was an expensive project as we literally had to build a 1:1 scale separator in our test lab. Without EUREKA, funding the project would have been difficult,” he added.

Separation equipment plays a crucial role in the oil and gas production process by splitting the wellstream, which may comprise of oil, gas, water and sand, into individual constituents.”By installing a full field subsea separation facility, Statoil expects to improve the Tordis field’s recovery factor from 49 to 55%,” explains Rune Mode Ramberg, Statoil’s subsea processing discipline adviser. Along with other upgrades to the field, the separation system will allow Statoil to extract roughly 35 million extra barrels of oil from the Tordis field. This is achieved by reducing the back pressure towards the Tordis field, by separating water and sand from the wellstream subsea, re-injecting water and sand in a separate well subsea, boosting the wellstream and reducing the receiving pressure at the topside production platform.

From an environmental aspect, less oil will be discharged into the sea. Every day, up to 100.000 barrels of produced water with some residual small oil droplets will instead be re-injected into a separate subsea well. If such oil discharges could be avoided ijn more offshore oilfields, the benefits will be considerable. This technology meets industry’s needs, too, as several European countries are striving to reduce such oil discharges. Moreover, with an ability to handle water and sand more efficiently, this separator will contribute to extending the life of oilfields and to making better use of invested material and capital.

Sally Horspool | alfa
Further information:
http://www.eureka.be/inaction/awards.do

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>