Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA's water mission instrument passes test programme

11.06.2007
After successfully undergoing a rigorous three-month testing programme, the innovative SMOS (Soil Moisture and Ocean Salinity) payload is about to make its journey from ESA's Test Centre in the Netherlands to France, where it will join the platform to form the satellite in preparation for launch next year.

After more than 10 years of research and development, the SMOS mission is adopting a completely new approach in the field of remote sensing by employing a novel instrument called MIRAS (Microwave Imaging Radiometer using Aperture Synthesis). By capturing images of microwave radiation emitted from the surface of the Earth at a specific wavelength, this novel instrument is capable of observing both the moisture in soil and salt in the oceans. MIRAS will be the first-ever 2-D interferometric radiometer in space and will provide much-needed data to learn more about the continual circulation of water between the oceans, the atmosphere and the land – the Earth's water cycle, one of the most important processes occurring on the planet and a crucial component of the weather and climate.

Making sure the instrument will withstand the rigors of launch and the harsh environment in orbit is an extremely important part of the mission development. Therefore, with launch scheduled for next year, MIRAS had to undergo an extensive testing programme in ESA's Test Centre.

In balance

After delivery from the instrument prime contractor EADS-CASA in Spain, the testing programme started with determining the instrument's 'mass properties'. This included precisely measuring its overall weight, locating the centre of gravity and the inertia around its three principle axes. These values are crucial for both tuning the launcher trajectory and as input for the satellite's Attitude and Orbit Control System.

Noise

The instrument module consists of a central structure and three deployable arms. These arms were folded up for the next testing procedure when the instrument was placed in the Large European Acoustic Facility. Here the tremendous noise and vibrations levels that are expected to be experienced under the launcher's fairing were simulated.

Temperature extremes

Having survived the acoustic tests, the instrument was transferred to the Large Space Simulator. This is a massive vacuum chamber where the extreme temperature differences of space are simulated. A solar beam, six metres in diameter, was repeatedly shone onto the instrument and then the instrument was subjected to extreme cold similar to that of deep space. Not only does the payload need to function properly under these extremes, the thermal environment and temperature distribution across the body of the three arms is an important factor for MIRAS's overall measurement performance. For the test to be meaningful, the instrument's three arms had to be fully deployed – suspended like a string puppet it just fitted into the 10-metre diameter chamber. These thermal tests continued around the clock for almost 3 weeks.

Testing images

Finally, the instrument was set up in what is called the Maxwell Facility for two types of tests – the electromagnetic compatibility test, which makes sure that nothing is disturbed when, for example, the data downlink is activated, and the image validation test, which is where an artificial source mounted on the ceiling is 'imaged' by the instrument under different conditions. In addition, tests were performed on the algorithms and software for the Level 1 processor, which converts digital counts into pictures for scientists to derive information on soil moisture and ocean salinity.

The engineers and scientists involved in this intensive testing programme are extremely pleased with the results and the MIRAS instrument is now in the process of being packed up for delivery to Thales Alenia Space (formerly Alcatel Alenia Space) in Cannes, where it will be joined with the PROTEUS platform to form the entire SMOS satellite.

Now confident that the instrument will survive the rigors of launch and its lifetime in space, ESA looks forward to the launch of the SMOS satellite from the Plesetsk Cosmodrome in northern Russia next year.

Achim Hahne | alfa
Further information:
http://www.esa.int/esaLP/SEMN5JEVL2F_LPsmos_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>