Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine sediment microbial fuel cells get a nutritional boost

05.06.2007
Discarded crab and lobster shells may be the key to prolonging the life of microbial fuel cells that power sensors beneath the sea, according to a team of Penn State researchers.

To produce energy, microbial fuel cells need organic material for the microbes to consume. However, deep sea sediments can be surprisingly devoid of organic material because living things in the photic zone – the area where light penetrates the water – are continuously recycled and little falls to the ocean floor. An absence of organics limits the lifetime of marine microbial fuel cells.

The researchers include chitin – processed crustacean shells – in a pillow-like anode made of carbon cloth. The anode is placed in the sediment or hung in the water where naturally occurring bacteria can eat the chitin.

"This approach is good for deeper ocean areas or anywhere we want to increase the power of marine microbial fuel cells," says Bruce E. Logan, the Kappe Professor of Environmental Engineering.

Microbial fuel cells work through the action of bacteria which can pass electrons to an anode. The electrons flow from the anode through a wire to the cathode, producing an electric current. In the process, the bacteria consume organic matter in the water or sediment. The Penn State approach uses the bacteria that naturally occur in the oceans and because so many sea creatures produce chitinous shells, many marine bacteria break down chitin.

Marine energy sources are often placed in remote areas to power sensors for such measurements as temperature, pressure, salinity, density, turbidity or particulate content. These sensors could be placed on buoys or used to monitor around offshore drilling platforms and to monitor for pollution or contamination, such as that caused by red tide, in both salt and fresh water. Other small devices can measure sound, light transmittance and conductivity. While the amounts of energy needed for these purposes are small, the locations often necessitate long-term remote operation.

The researchers, who included Logan; Rachel A. Brennan, assistant professor of civil engineering; Tom L. Richard, associate professor of agricultural and biological engineering; and Farzaneh Rezaei, graduate student in agricultural and biological engineering, tested two types of chitin and one type of cellulose.

"We found that cellulose was not as good as chitin," Logan reported in the current issue of Environmental Science and Technology. "The ocean is so used to chitin that there may be more naturally occurring bacteria that eat chitin than those that eat cellulose."

While the team has not tested the marine microbial fuel cell in the ocean sediment, they did create a fuel cell in the laboratory consisting of a glass bottle with the anode embedded in the sediment on the bottom and the carbon paper and platinum cathode suspended in the water. In the ocean, no container is needed, but the anode and cathode must be close enough together so the protons or positive charge can pass through the water to the cathode.

The researchers tested two different sizes of chitin, one finer than the other and found that both increased power production over the same set up without the additional bacterial food supply. However, the finer particles produced almost twice the power as the larger particles, suggesting that the bacteria can more easily consume the smaller particles.

"We can adjust the particle size to control the rate at which chitin is consumed and alter the power output and the fuel cell's longevity," says Logan. "Technically, there is no reason why we cannot put a bigger bag of feed for the anode to supply more food."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>