Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine sediment microbial fuel cells get a nutritional boost

05.06.2007
Discarded crab and lobster shells may be the key to prolonging the life of microbial fuel cells that power sensors beneath the sea, according to a team of Penn State researchers.

To produce energy, microbial fuel cells need organic material for the microbes to consume. However, deep sea sediments can be surprisingly devoid of organic material because living things in the photic zone – the area where light penetrates the water – are continuously recycled and little falls to the ocean floor. An absence of organics limits the lifetime of marine microbial fuel cells.

The researchers include chitin – processed crustacean shells – in a pillow-like anode made of carbon cloth. The anode is placed in the sediment or hung in the water where naturally occurring bacteria can eat the chitin.

"This approach is good for deeper ocean areas or anywhere we want to increase the power of marine microbial fuel cells," says Bruce E. Logan, the Kappe Professor of Environmental Engineering.

Microbial fuel cells work through the action of bacteria which can pass electrons to an anode. The electrons flow from the anode through a wire to the cathode, producing an electric current. In the process, the bacteria consume organic matter in the water or sediment. The Penn State approach uses the bacteria that naturally occur in the oceans and because so many sea creatures produce chitinous shells, many marine bacteria break down chitin.

Marine energy sources are often placed in remote areas to power sensors for such measurements as temperature, pressure, salinity, density, turbidity or particulate content. These sensors could be placed on buoys or used to monitor around offshore drilling platforms and to monitor for pollution or contamination, such as that caused by red tide, in both salt and fresh water. Other small devices can measure sound, light transmittance and conductivity. While the amounts of energy needed for these purposes are small, the locations often necessitate long-term remote operation.

The researchers, who included Logan; Rachel A. Brennan, assistant professor of civil engineering; Tom L. Richard, associate professor of agricultural and biological engineering; and Farzaneh Rezaei, graduate student in agricultural and biological engineering, tested two types of chitin and one type of cellulose.

"We found that cellulose was not as good as chitin," Logan reported in the current issue of Environmental Science and Technology. "The ocean is so used to chitin that there may be more naturally occurring bacteria that eat chitin than those that eat cellulose."

While the team has not tested the marine microbial fuel cell in the ocean sediment, they did create a fuel cell in the laboratory consisting of a glass bottle with the anode embedded in the sediment on the bottom and the carbon paper and platinum cathode suspended in the water. In the ocean, no container is needed, but the anode and cathode must be close enough together so the protons or positive charge can pass through the water to the cathode.

The researchers tested two different sizes of chitin, one finer than the other and found that both increased power production over the same set up without the additional bacterial food supply. However, the finer particles produced almost twice the power as the larger particles, suggesting that the bacteria can more easily consume the smaller particles.

"We can adjust the particle size to control the rate at which chitin is consumed and alter the power output and the fuel cell's longevity," says Logan. "Technically, there is no reason why we cannot put a bigger bag of feed for the anode to supply more food."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht The disappearance of common species
01.02.2018 | Technical University of Munich (TUM)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>