Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine sediment microbial fuel cells get a nutritional boost

05.06.2007
Discarded crab and lobster shells may be the key to prolonging the life of microbial fuel cells that power sensors beneath the sea, according to a team of Penn State researchers.

To produce energy, microbial fuel cells need organic material for the microbes to consume. However, deep sea sediments can be surprisingly devoid of organic material because living things in the photic zone – the area where light penetrates the water – are continuously recycled and little falls to the ocean floor. An absence of organics limits the lifetime of marine microbial fuel cells.

The researchers include chitin – processed crustacean shells – in a pillow-like anode made of carbon cloth. The anode is placed in the sediment or hung in the water where naturally occurring bacteria can eat the chitin.

"This approach is good for deeper ocean areas or anywhere we want to increase the power of marine microbial fuel cells," says Bruce E. Logan, the Kappe Professor of Environmental Engineering.

Microbial fuel cells work through the action of bacteria which can pass electrons to an anode. The electrons flow from the anode through a wire to the cathode, producing an electric current. In the process, the bacteria consume organic matter in the water or sediment. The Penn State approach uses the bacteria that naturally occur in the oceans and because so many sea creatures produce chitinous shells, many marine bacteria break down chitin.

Marine energy sources are often placed in remote areas to power sensors for such measurements as temperature, pressure, salinity, density, turbidity or particulate content. These sensors could be placed on buoys or used to monitor around offshore drilling platforms and to monitor for pollution or contamination, such as that caused by red tide, in both salt and fresh water. Other small devices can measure sound, light transmittance and conductivity. While the amounts of energy needed for these purposes are small, the locations often necessitate long-term remote operation.

The researchers, who included Logan; Rachel A. Brennan, assistant professor of civil engineering; Tom L. Richard, associate professor of agricultural and biological engineering; and Farzaneh Rezaei, graduate student in agricultural and biological engineering, tested two types of chitin and one type of cellulose.

"We found that cellulose was not as good as chitin," Logan reported in the current issue of Environmental Science and Technology. "The ocean is so used to chitin that there may be more naturally occurring bacteria that eat chitin than those that eat cellulose."

While the team has not tested the marine microbial fuel cell in the ocean sediment, they did create a fuel cell in the laboratory consisting of a glass bottle with the anode embedded in the sediment on the bottom and the carbon paper and platinum cathode suspended in the water. In the ocean, no container is needed, but the anode and cathode must be close enough together so the protons or positive charge can pass through the water to the cathode.

The researchers tested two different sizes of chitin, one finer than the other and found that both increased power production over the same set up without the additional bacterial food supply. However, the finer particles produced almost twice the power as the larger particles, suggesting that the bacteria can more easily consume the smaller particles.

"We can adjust the particle size to control the rate at which chitin is consumed and alter the power output and the fuel cell's longevity," says Logan. "Technically, there is no reason why we cannot put a bigger bag of feed for the anode to supply more food."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>